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Abstract

We explore a particular approach to the analysis of dynamical and geometrical properties of au-
tonomous, Pfaffian non-holonomic systems in classical mechanics. The method is based on the con-
struction of a certain auxiliary constrained Hamiltonian system, which comprises the non-holonomic
mechanical system as a dynamical subsystem on an invariant manifold. The embedding system pos-
sesses a completely natural structure in the context of symplectic geometry, and using it in order
to understand properties of the subsystem has compelling advantages. We discuss generic geomet-
ric and topological properties of the critical sets of both embedding and physical system, using
Conley-Zehnder theory, and by relating the Morse—Witten complexes of the ‘free’ and constrained
system to one another. Furthermore, we give a qualitative discussion of the stability of motion in the
vicinity of the critical set. We point out key relations to sub-Riemannian geometry, and a potential
computational application.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

We introduce and explore a particular approach to the analysis of autonomous,
Pfaffian non-holonomic systems in classical mechanics, which renders them naturally
accessible to the methods of symplectic and sub-Riemannian geometry. We note that
typical examples of systems encountered in sub-Riemannian geometry emerge from
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optimal control, or ‘vakonomic’ problems, which are derived from a different variational
principle (minimization of the Carnot—Caratheodory distance) than the Euler—
Lagrange equations of classical mechanical systems with non-holonomic constraints (the
Holder variational principle, cf[3], and Section 4in this paper). The strategy is based

on the introduction of an artificial Hamiltonian system with constraints that are compat-
ible with the symplectic structure, constructed in a manner that it comprises the non-
holonomic mechanical system as a dynamical subsystem on an invariant manifold. The
main focus of the discussion in this paper aims at the geometrical and topological
properties of the critical sets of both embedding and mechanical system, on the
stability of equilibria, and an application of the given analysis to a computational
problem.

There exists a multitude of different approaches to the description and analysis of non-
holonomic systems in classical mechanics, stemming from various subareas of application.
The geometrical approach given here has been strongly influenced by V8&hemd
Brauchli et al[11,12,32] A construction for the Lagrangian case, which is closely related
to what will be presented iBection 4 has been given ifiL3]. A different approach in the
Hamiltonian picture is dealt with if85]. A geometrical theory of non-holonomic systems
with a strong influence of network theory has been developd88h The geometrical
structure of non-holonomic systems with symmetries and the associated reduction theory,
as well as aspects of their stability theory has been at the focus in the important works
[7,23,24,40] and other papers by the same authors.

This paper is structured as follows. Bection 2 we introduce a class of Hamilto-
nian systems with non-integrable constraints. Given a symplectic mani$é)d) and
a non-integrable, symplectic distributiéhy we focus on the flowp, generated by the com-
ponentXI‘g of the Hamiltonian vector field i in V. In Section 3we study the geometry and
topology of the critical sef of the constrained Hamiltonian system. The main technical tool
used for this purpose is a gradient-like flgyy whose critical set is identical to that ofp.
Assuming that the Hamiltoniafl : M — R is a Morse function, it is proved that generi-
cally, € is a normal hyperbolic submanifold 8f. Using Conley—Zehnder theory, we prove a
topological formula for closed, compattthat is closely related to the Morse—Bott inequal-
ities. A second, alternative proof is given, based on the use of the Morse—Witten complex,
to elucidate relations between the ‘free’ and the constrained syste®echion 4 we give
a qualitative, partly non-rigorous discussion of the stability of the constrained Hamiltonian
system, and conjecture a stability criterion for the critically stable case. A proof of the as-
serted criterion, which would involve methods of KAM and Nekhoroshev theory, is beyond
the scope of the present work. We derive an expression for orbits in the vicinity of a critically
stable equilibrium that is adapted to the flag/ofand point out relations to sub-Riemannian
geometry.

In Section 5 we consider Hamiltonian mechanical systems with Pfaffian cons-
traints. We show that for any such system, there exists an auxiliary constrained Hamil-
tonian system of the type introduced Bection 2 We study the global topology
of the critical manifold of the constrained mechanical system, and again discuss
the stability of equilibria. Finally, we propose a computational application, a method to
numerically determine the generic connectivity components of the critical
manifold.
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2. A non-integrable generalization of Dirac constraints

Let (M, w, H) be a Hamiltonian system, wheM is a smooth, symplectizi2manifold
with C*° symplectic structuren € A2(M), and whereH € C*°(M) is the Hamilton
function. Forp = 1, ..., 2n, A?(M) denotes th&>°(M)-module of p-forms onM. The
Hamiltonian vector field{y € I'(TM) is determined by

ix,w = —dH,

wherei stands for interior multiplication. Given a smooth distributisgh c TM, I'(W)
will denotes theC*°(M)-module of smooth sections &¥. The Hamiltonian flow is the
1-parameter groug; € Diff (M) generated by z7, with ¢ € R, and®g = id. Its orbits are
solutions of

0D (x) = Xp(P:(x)) (l)

forx € M, andr € R.
Let us first recall some standard facts about Dirac constraints that will be useful in the
subsequent construction. Let, fiirg € C*,

{f gl =0wXy, Xg) 2

denote the smooth, non-degenerate Poisson structuveinduced byw. It is a derivative
in both of its arguments, and satisfies the Jacobi idefifitye, 2}} + (cyclic) = 0, thus
(C*®(M), {-,-}) is a Lie algebra. Ther{]l) translates into

0 f(D:(x)) = {H, fH(P:(x)) (3)

forall f € C®°(M),and allx € M,t € R.

Let j : M’ — M be an embedded, smootlk-8imensional symplectic submanifold of
M, endowed with the pullback symplectic structyife. The Dirac bracket corresponds to
the induced Poisson bracket a1,

{f &b = (o) (X7, Xp),

defined for any pair of extensiong g € C®(M) of f g € C®(M’). If M’ is locally
characterized as the locus of common zeros of some family of funcipns C*° (M),
i=1,...,2(n — k), the following explicit construction of the Dirac bracket can be given
[25]. SinceM’ C M is symplectic, thén — k)? functions locally given byDj = {G;, G}
can be patched together to define a matrix-vald&dfunction that is invertible everywhere
on M’. The explicit formula for the Dirac bracket is locally given by

{felo=1{f.8 —{f.GiD" (G}, &), @)

whereD! denotes the components of the inverselof]f
This construction can be put into the following more general context.

Definition 2.1. AdistributionV over the base manifolt is symplecticifV, is a symplectic
subspace of, M with respect tav,, for all x € M. Its symplectic complemerit= is the
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distribution which is fibrewiseo-skew orthogonal td’. Furthermore, an embeddidgc
R — M that is tangent t& is calledV-horizontal.

Clearly, V' is by itself symplectic, and smoothnessiofandw implies smoothness of
V<. Furthermore, the Whitney sum bundled V- is TM. Thus, letV denote an integrable,
smooth, symplectic rankk2distributionV over M. Clearly, any sectioX € I'(TM) has a
decomposition

x=x"+x"",

wherexV" e n(vD), so thatw(X", XV") = 0. Furthermore, there exists anskew
orthogonal tensatty : TM — TM with

Ker(my) = VY, 7y(X) =X VX € I(V),
which satisfies
o(ry(X),Y) = (X, my(Y)) (5)

for all X, Y € I(TM). It will be referred to as the-skew orthogonal projection tensor
associated t&’. LetY, ..., Yo denote alocal spanning family of vector fields farThen,
V being symplectic is equivalent to the matriX;l := [ (Y;, Y;)] being invertible.

Lemma 2.1. Let[CK] denote the inverse ¢€], and letd; = iy,w € AL(TM). Then
locally, 7y = CY; ® 6;.

Proof. The factthaCy; ® ¢; is a projector, and th€5) holds, follows fromd;(Y;) = Cjj,
andCij ck = 8{. Its rank is clearly R, and it is straightforward to see that its kernel is given
by I(vL). O

2.1. Non-integrable constraints

The quadrupleM, o, H, V) naturally define a dynamical system whose orbits are all
V-horizontal. Its flow is simply the 1-parameter group of diffeomorphigmgenerated by
Xy, i=ny(Xn) € I(V), with

3P (x) = X}y (®,(x)) (6)

for everyx € M. In alocal Darboux chart, whereis represented by

. 0 1, -
“\-1, o)/’

and wherex(¢) stands for the vector of coordinate component®gf:), (6) is given by
0px (1) = (PyJoxH)(x(1)) = (JP,;r O H) (x(0)). (8)

P denotes the matrix ofy, andPT is ts transpose.
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If the condition of integrability imposed ol is dropped, this dynamical system will
allow for the description of non-holonomic mechanics/lis integrable M is foliated into
2k-dimensional symplectic integral manifolds¥fOn every leaf : M’ — M, the induced
dynamical system corresponds to the pullback Hamiltonian sy&énm*w, H o j) [10].

In this sense(6) generalizes the Dirac constraints.

A new class of dynamical systems is obtained by discarding the requirement of integrabil-
ityonV. Let[., -] denote the Lie bracket. We recall that the distributiois non-integrable
if there exists a filtration

VoCcVicVoC---CV, 9

inductively defined byy = V, andV; = V;_1+[Vo, Vi—1], whereVy # Vp. The sequence
{Vi}] is called thdlagof V. If the fiber ranks of alV; are base point independetis called
equiregular. The smallest number d€gat which the flag oV stabilizes, that is, for which
Vi = Vdegw) Vs > deqV), is called the degree of non-holonomy Wf If Vgeqy) = TM,
one says thav satisfies Chow’s condition, or that it is totally non-holonomic.

Proposition 2.1 (Frobenius condition)V is integrable if and only if locally
A = () )@y — dy(my)b) = 0 (10)

everywhere on M

Proof. V isintegrable if and only ifty ([7y (X), 7y (Y)]) = O for all sectionsX, Y of TM,
which is equivalent td/; = V. The asserted formula is the local coordinate representation
of this condition. O

2.2. An auxiliary almost Kahler structure

For the analysis in subsequent sections, it will be useful to introduce an almost Kéhler
structure onV/ that is adapted t&'. To this end, let us briefly recall some basic definitions.
Let ¢ denote a Riemannian metric al. An almost complex structuré is a smooth
bundle isomorphisnd : TM — TMwith J2 = —1. Together withg, it defines a two-form
satisfying

we, s (X.Y) = g(IX. ) (12)

for all sectionsX, Y € I'(TM). g is Hermitian if g(JX, JY) = g(X, ¥), and Kéhler ifw, ;
is closed. The tripl€g, J, w,, ;) is called compatible. Every symplectic manifold admits an
almost complex structuré, and a Kahler metrig, such thatg, J, ) is compatible.

Proposition 2.2. For any symplectic manifoldM, ), together with a symplectic distribu-
tion V, there exists a compatible triplg, J, ), such thatry is symmetric with respect to
g, andxyJIX = Jry X forall X € I(TM).

Proof. We pick a smooth Riemannian metgwon M, relative to whichry is symmetric,
for instance by choosing an arbitrary Riemannian metrian M, and definingg(X, Y) :=
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gavX, myY) + ¢ @y X, myY), wherery = 1 — my. We consider the non-degenerate,
smooth bundle mai defined byw(X, Y) = g(KX, Y), which is skew symmetric with
respect tog, that is, itsz-adjoint isK* = —K. K*K = —K? is smooth, positive defi-
nite, non-degenerate agdsymmetric, hence there is a unique smooth, positive definite,
g-symmetric bundle mapt defined byA? = —K?2, which commutes withk. Conse-
quently, the bundle map = KA1 satisfies/2 = —1, and defines an almost complex
structure. Sincel is positive definite ang-symmetric,g(X, Y) := g(AX Y) is a Rieman-
nian metric withw (X, Y) = g(JX, Y). Moreover, this metric is Hermitian, singéJX, JY) =
(KX, A7IKY) = —3(X, K24~ 1Y) = (X, AY) = g(X, Y). In fact, sincew is closedg is
Kahler.

To show thatry is g-symmetric, we note thaty commutes withk, sinceg(Kny X, Y) =
wvX,Y) = oX,ryY) = g(KX, nyY) = g(myKX, Y) for all X,Y € I'(TM), using
that 7y is symmetric with respect t§. Hence,7y commutes withA2 = —K?2, and it
straightforwardly follows from th&-orthogonality ofA, v, and the positivity ofA that
my andA commute. Hencery is g-symmetric, and it is also clear thaj, commutes with
J = KA1, Thus,J in particular restricts to a bundle map. V — V. g

2.3. Further properties

Some key properties of Hamiltonian systems concerning symmetries, Poisson brack-
ets, energy conservation, and, to some degree, symplecticness, can be generalized to the
constrained system.

2.3.1. Symmetries

Let us assume that the Hamiltonian systéM, », H) admits a symplectic;-action
(G some Lie groupy¥ : G — Diff (M), such thaWw = w andH o ¥, = H for all
h € G. Then, we will say that the constrained systéWh w, H, V) admits aG-symmetry
if ¥,V =V holds for allh € G.

2.3.2. Generalized Dirac bracket
The smoothR-bilinear, antisymmetric pairing o6°° (M) associated toM, w, V) given
by

{f 8ty = wv(Xy), mv (X)) (12)

is a straightforward generalizes of the Dirac and Poisson brackets. Along orlitsarie
has

¥ f(@i(x) = {H, flv(P(x))

for all x € M, in analogy to(3). However, the bracketl2) does not satisfy the Jacobi
identity if V is non-integrable, but it satisfies a Jacobi identity on every (symplectic) integral
manifold if V is integrable.

2.3.3. Energy conservation
This key conservation law also exists for the constrained system.
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Proposition 2.3. The energy H is an integral of motion of the dynamical syg@&m

Proof. This follows from the antisymmetry of the generalized Dirac bracket, which implies
thato,H = {H, H}y = 0. O

2.3.4. Symplecticness
The flow @, is not symplectic, but the following holds. Let us consider

3Prw = éfﬁxxa) = @f(dixxa) +iyy do) = —&F d((y)Lo; H dx*)
= — @} ()3 H dx! A dx*) = — 307 (3 (ry)} — e (rv)})8; H dx! A dx®).
Hence, the restriction cﬁ,&?;‘w to X, Y € I(V) is given by
H Do (X,Y) = — 3@} (AlQHXY?),

where Al is defined inLemma 2.1 Thus, the right-hand side vanishes identically if and
only if V is integrable. In the latter case, the restrictionﬁj‘w to V x V equals its value
for t = 0, given byw(rry (), 7y (-)). On every integral manifold : M’ — M of V, &, is
symplectic with respect to the pullback symplectic structife.

3. Thegeometry and topology of the critical manifold

In this main section, we address geometrical and topological properties of the critical set
¢ of the constrained Hamiltonian systedi, w, H, V). The main result of the subsequent
analysis is, fotM compact and without boundary, the topological formid) that interre-
lates the Poincaré polynomials &f andCgen in @ manner closely akin to the Morse—Bott
inequalities. This result implies that the topologyMfnecessitates the existence of certain
connectivity components dfyen0f a prescribed index. The analysis is structured as follows.

In Section 3.1we prove thatt is, in the sense of Sard’s theorem, generically a smooth
2(n — k)-dimensional submanifoldgen C M. For the special case in whidhis integrable,
it is shown that the intersection of any integral manifoldofvith Cgen is a discrete set,
in agreement with the usual understanding that critical points in Hamiltonian systems—on
every leaf of the foliation in the integrable case—are typically isolated.

In Section 3.2we introduce the main tool for the analysisfyfan auxiliary gradient-like
flow ¢; € Diff (M) generated by the vector fietd, V, H, whereg is the Kahler metric of
the compatible quadruple introduced afepposition 2.2From this point on, we assume
thatH : M — Ris a Morse function. Lej : €gen — M denote the embedding. We show
thatCyenis normal hyperbolic with respect ¢y, and that the critical points gf H onCgen
are precisely those @f on M. The latter is quintessential for our discussion of the topology
of €gen Via comparison of the Morse—-Witten complexes(@fen, j*H) and of (M, H) in
Section 3.4

In Section 3.3we prove(18) by an application of Conley—Zehnder thedfy] to the
auxiliary gradient-like system. The assumptiongaare slightly less strict than genericity.

In particular, assuming that\ €genis a disjoint union of”* manifolds, we show that every
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connectivity component af \ Cgenis contained in & -level surface, and that\ Cgencan
be deformed away by an infinitesimal perturbation of the vector field.

In Section 3.4we assume that = C4e, and give a second proof based on the compar-
ison of the Morse—Witten complexes @/, H) and(Cgen, Hlgye,)- Our construction only
uses the theory for non-degenerate Morse functions, not for Morse—Bott functions. The
interest in this discussion is to elucidate the relationship between critical points of the ‘free’
system(M, H), and of the critical manifold'gen of the constrained systet, H, V). The
special case of mechanical systems (whirés non-compact) will be analyzed in a later
section.

3.1. Generic properties of the critical set

Let us to begin with recall some basic definitions. Critical point&/&re given by zeros
of dH, and a corresponding value &f is called a critical value. A critical level surface
X' corresponds to a critical value of H, whereas a regular level surfagg: contains no
critical points ofH (the corresponding value @f is then called regular). The critical set of
the constrained Hamiltonian systé, w, H, V) is given by

¢ ={xeMX}(x) =0 cM.

The following theorem holds independent of the fact whethés integrable or not.

Theorem 3.1. In the generic casethe critical set is a piecewise smootB(n — k)-
dimensional submanifold of M

Proof. Let {¥;}%, denote a smooth, local family of spanning vector fieldsWoover an
open neighborhood C M. SinceV is symplectic, the fact thax}’, is a section ofV

implies thatw (Y, X}L’,) cannot be identically zero for alland everywhere i®/. Due to the
w-skew orthogonality ofry, andnyY; = Y3,

oY, X)) = o(v(Yy), Xp) = o(Y:, Xg) = Yi(H).

Thus, wWithF := (Y1(H), ..., Ya(H)) € C®U,R%), itis clear that¢ N U = F~1(0).
SinceF is smooth, Sard’'s theorem implies that regular values, having smo@th; 2)-
dimensional submanifolds @&f as preimages, are denseAU) [28]. O

For future technical convenience, we pick a local spanning fafiijly: 1“(V)}izil for vV
that satisfies

oY, Y)) =Jj

~ 0 1
J = k .

This choice is always possible.

with
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Furthermore, introducing the associated family of 1-forff$ by 6;(-) = w(Y;, 1),
Lemma 2.limplies that

Ty = 7in1’®9/',

whereJ are the components df-* = —J. ExpandingX };, with respect to the basi¥;}
gives

X} =nv(Xp) = —Y:(H)IY;, (13)

where one uses the relationsm}ixg) = Y;(H) obtained in the proof oTheorem 3.1

Then, the following proposition holds, which is in the subsequent discussion interpreted as
the property of normal hyperbolicity @ with respect to a certain gradient-like flow if the
genericity assumption is satisfied.

Proposition 3.1. Under the genericity assumption ©heorem 3.1the (2k x 2k)-matrix
given by[ Y, (Y;(H))(a)] is invertible for alla € &, and every local spanning family; €
n(v)}of V.

Proof. Let us pick a local basiSY,-}f" for v, and{Zj}f(”_k) for V1, which together span
TM. Leta € €gen, and assume the generic situatiorTbeorem 3.1Becaus&genis defined
as the set of zeros of the vector fi€lB), the kernel of the linear map

dF; ()T %Yy s TuM — Vg,

whereF; := Y;(H), is preciselyT,Cgen, and has a dimension(i2— k).
In the basigY1la, . .-, Y2tla: Z1las - - -» Zom—i)la}, its matrix is given by

A=[AyAy.].

whereAy = [Yi(F;)JXY|,], and A1 = [Z;(F;)T¥Y|,]. Bringing A into upper trian-
gular form, Ay is likewise transformed into upper triangular form. Because the rank of
is 2k, and Ay is a (% x 2k)-matrix, its upper triangular form has Zon-zero diagonal
elements. Consequentlyy is invertible, and due to the invertibility of, one arrives at the
following assertion. O

Corollary 3.1. Let{Y,-}l.Zi1 denote a local spanning family for, ¥ind Iet{Xi}l.zil be alocal
spanning familyof C* section$ of NCgyen, interpreted as a vector bundle ovégen that
is embedded ilhjxe%en T.M. Then the matrix[g(Y;, Xj)(x)]f’fi:l is invertible for every
X € Qgen.

Corollary 3.2. Let€gensatisfy the genericity assumptionTdieorem 3.1If V is integrable
the intersection of any integral manifold of V witljen is a discrete set

Proof. The previous proposition implies that generically, integral manifoldg witersect
Cgentransversely. Their dimensions are mutually complementary, hence the intersection set
is zero-dimensional. O
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3.2. Normal hyperbolicity and an auxiliary gradient-like system

In this section, we introduce our main tool necessary for the analysis of the topolégy of
given by an auxiliary gradient-like flow aif whose same critical set is aléoFurthermore,
we show that genericallg is normal hyperbolic with respect to the latter.

3.2.1. Ageneralized Hessian
To begin with, we define a generalized Hessiargforhe usual coordinate-free definition
of the Hessian off is V dH, evaluated at the critical points &f, whereV is the Levi-Civita

connection of the Kéhler metric Letn‘t denote the dual projection tensor associatedto

which acts on sections of the cotangent buridi@/, so that for any 1-fornd, (n‘te, X) =

(0, Ty X). The generalization of the Hessian in our context is the teﬁma dH), which
acts as a bilinear form of(TM) x I'(TM) by way of

V(rd dH)(X, Y) = (Vx Gy dH), ¥) = (Gro) H ). — T o) H )XY,

wherer7] are the Christoffel symbols. Evaluating this quantity®nthe second term in the
bracket on the lower line is zero. The non-vanishing term is determined by the matrix

[Krs] := [((mv)H ) 5] (14)

One straightforwardly verifies thairv){ Kjx = Kik is satisfied everywhere ofi, hence
rank{K} < rank{ry} = 2k = rank{V}. Clearly, the corank oK|, equals the dimension of
the connectivity component @f containinga.

3.2.2. Definition of the gradient-like system

A flow is gradient-like if there exists a functigh: M — R that decreases strictly along
all of its non-constant orbits. The flo@, of the constrained Hamiltonian system is not
gradient-like, and hence turns out to be of limited use for the study of the global topology of
¢, because invariant sets @f do in general not only contain fixed points, but also periodic
orbits.

Instead, we introduce the auxiliary dynamical system

9 (1) = — (v Ve H) (y(1)), (15)

wherey : I ¢ R — M, which turns out to be an extremely powerful tool for our purpose.
Let us denote its flow by, € Diff (M). The orbits of(15) are clearlyV-horizontal, and
both @{ and¢; exhibit the same critical s&t.

Proposition 3.2. The flowg, is gradient-like
Proof. Since

O H(y(®) = (dH(y(0), 0y()) = —g(VoH, my Vo H) ((D)
= _g(angHv angH)(V(t)) <0,
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it follows that H decreases strictly along the non-constant orbiig, 0¥Ve have here used
the fact that(g, J, w, y) is a compatible quadruple. O

(g, J, o, my) has been constructed for this precise reason. It is immediately clear that
generates no periodic trajectories, hediammprises all invariant sets ¢f.

3.2.3. Morse functions and non-degenerate critical manifolds

Let us next recall some standard definitions from Morse and Morse—Bott theory that will
be needed in the subsequent discus§i28]. The dimensions of the zero and negative
eigenspaces of the Hessian ot a critical pointz are called the nullity and the index of
the critical pointa. If all critical points of f : M — R have a zero nullityf is called a
Morse function, and the index is then called the Morse index tfthe critical points off
are not isolated, but elements of critical manifolds that are non-degenerate in the sense of
Bott, H is called a Morse—Bott functiof8]. Throughout this section, we will assume that
H is a Morse function.

Furthermore, we recall some standard definitions related to normal hyperbolicity, applied
tothe case of. A connectivity componerd; is locally normal hyperbolic at the pointe €
with respect ta; if it is a manifold atz, and if the restriction ofi, to the normal spac¥,¢
is non-degenerate. A connectivity componénis called non-degenerate if it is a manifold
that is everywhere normal hyperbolic with respecito The index of a non-degenerate
connectivity componert; is the number of eigenvalues of the constrained Hessjaon
¢, that are contained in the negative half plane.

Proposition 3.3. If € is generic in the sense of Sard’s theoréris normal hyperbolic with
respect to the gradient-like flogy.

Proof. This follows straightforwardly fronfProposition 3.1 O

Let¢;,i =1, ...,/ denote the connectivity componentsot UC;, and letj; : & — M
denote the embedding of tlih components.

Proposition 3.4. Assume that satisfies the genericity assumption in the sense of Sard’s
theoremand thatH : M — R is a Morse function. TherH; := Ho j; : €, —> Risa
Morse functionandx € ¢; is a critical point of H; if and only if it is a critical point of H

Proof. It is trivially clear that every critical point of{ is a critical point ofH;. To prove
the opposite direction, suppose that an extremum o#|¢;. Then,V,H|, € N,¢, but
also, by definition o, P,V,H|, = 0. By Corollary 3.1 this can only be true ¥, H, = 0.
The Hessian of the restriction &f at any critical point ofH; is non-degenerate, thu is
a Morse function ore;. O

Corollary 3.3. The critical points ofH |¢,, : €gen — R are precisely the critical points
of H: M — R.If ¢; is a non-generic connectivity component that is a normal hyperbolic
submanifold of M¢; C Xy (e,).
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Proof. The first assertion follows trivially from the previous proposition. Assuming¢hat
is a non-generic connectivity componen¥othat is a manifold and normal hyperbolic, the
previous proposition implies that there are no extrem#/ {f . Thus,¢; is a submanifold
of the level surface&l g g . O

3.3. Approach via Conley—Zehnder theory

The goal in this and the next section is to derive the relation(d@between the Poincaré
polynomials of¢, andM . We first approach this problem by use of Conley—Zehnder theory
[15] and under slightly less restrictive assumptions than genericity.

Let us for convenience first recall some of the key elements from Conley—Zehnder theory
[15]. Let &; be any compact component &f An index pair associated @ is a pair of
compact setgN;, N;) that possesses the following properties. The interia¥ofontains
¢;, and moreoverg; is the maximal invariant set undey in the interior of N;. N; is a
compact subset df; that has empty intersection witf), and the trajectories of all points
in N; that leaveN; at some time under the gradient-like flgwintersectV;. N; is called
the exit set ofV;.

The homotopy type of the pointed spa¥g/ N; only depends og;, by a result proven in
[15], so that the relative cohomology* (N;, N;) (with coefficients appropriately chosen)
is independent of the particular choice of index pairs (the spa¢d/; is obtained from
collapsing the subspacdé of N; to a point)[33]. The equivalence clas®/[/N;] of pointed
topological spaces under homotopy is called@ualey indeof ¢;.

Let 7 denote a compact invariant set unger A Morse decomposition of is a finite,
disjoint family of compact, invariant subse{sss, ... , M,} that satisfies the following
requirement on the ordering. For everne I \ U; M;, there exists a pair of indicés< j,
such that lim_, _o ¢:(x) C M;, and lim_, o ¢:(x) C M;. Such an ordering, if it exists, is
called admissible, and thd; are called Morse sets @f

For every compact invariant seadmitting an admissibly ordered Morse decomposition,
there exists an increasing sequence of compact\etsth No C N1 C --- C Ny, such
that(N;, N;_1) is an index pair foiM;, and(N,,, Np) is an index pair fod [15].

Consider compact manifolds > B O C. Itis a standard fact that the exact sequence of
relative cohomologies

k—1 k
.5 HY(A, B) — H*(A, C) — H¥(B, C)2> H**X(A, B) — -
implies that, withr; , denoting the rank off” (N;, N;_1),
D WPrip =Y bpA? + 1+ 1)Q()

Lp p

for the indicated Poincaré polynomials (cf. for instafi22]). b; is the jth Betti number
of the index painN,,, No) of I, andQ(4) is a polynomial inA with non-negative integer
coefficients. Due to the positivity of the coefficients@¢r), it is clear that) _; r; , > b),.

If M is compact and closed, andifis non-degenerate, the following holds. The invariant
setl can be chosento be equalitb We letN,, = M andNgy = @ denote the top and bottom
elements of the sequence defined above, and order the connected elendeatsafding
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to the descending values of the maximum#bfattained on eacht;. Then,¢ furnishes a

Morse decomposition foM. The homology groups aff are isomorphic to the relative
homology groups of the index paiW,,, Ng). Hence the numbers, are the Betti numbers
of M.

Proposition 3.5. Letd; C ¢genbe a generic connectivity compongmampact and without
boundary and let(N;, N;) denote any associated index pair. Then

HTH (N, Ny = HU(E), (16)
wherey; is the index off;, andg = 0, ..., dim(¢;).

Proof. We consider, fokg > 0 small, a compact tubulap-neighborhood’ of ¢; (of
dimension 2), and let

WIHE) = (W (€)ueg)nU

denote the intersection of the center unstable manifol§; efith U. W~ (¢;) denotes the
unstable manifold of;. Pick some small, positive < ¢p, and letU, be the compact tubular
e-neighborhood oW "(¢;) in U.

Letting € continuously go to zero, we obtain a homotopy equivalence of tubular neigh-
borhoods, for whictW["(¢;) is a deformation retract. Let

U= 3U, N ¢pr(Ue)

denote the intersection 6/, with all orbits of the gradient-like flow that contain points in
U.. Then,(U., U™ is an index pair fok;, and by lettinge continuously go to zerd/o!
is homotopically retracted oW (¢;).

Thus, by homotopy invariance,

H*(Ue, U™ = H*(WEH(E;), WEH(E))).

Since¢; is normal hyperbolic with respect to the gradient-like floW;"(¢;) has a constant
dimensionn; + u(¢;) everywhere, whera; = dim¢;. Therefore, by Lefschetz duality
[16],

H"THTP(WENE), IWEHE)) = Hp(WHH(E) \ WGH(E),

whereu; = w(¢;), the index of¢;. Since¢; is a deformation retract of the interior of
WGH(€)), the respective cohomology groups are isomorphic.
Due to dim¢;) = n;, we have by Poincaré duality

Hy(WEHE) \ dWEH(E))) = Hp () = H"P(E)),
so that withg := n; — p,
HITH (U, UMY = HY(E)), 17

which proves the claim. O
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From(17), we deduce that; , = dim H"P~#i(¢;) (recalling thaty; is the index of¢;),
hencer; , = b, (€;). Assuming that the number of connected componentsisfinite,
one thus obtains

D OAPTHIBL () =) aPhy(M) 4+ (L4 1)Q(), (18)
i,p P

which in particular implie$_; b,—,,;(€;) > b,(M). Settingx = —1,
D (Db, €)=Y (=DM x(€) = x(M)

P i
wherey denotes the Euler characteristic.
Remark 3.1. Inthe case of mechanical systems, the phase space of the relevant constrained
Hamiltonian system is non-compact, and the critical manifold is in general unbounded.

Therefore, the arguments used here do not apply. However, since in thattasdg¢ are
vector bundles, we are nevertheless able to prove results that are fully analo¢tgis to

We can prove a slightly more general result by relaxing the assumption of genericity.

Proposition 3.6. Assume that \ Cgenis a disjoint union ofct-manifolds. Then
D biph P =3 "byaP + (1+1)Q0). (19)
Lp r
Qiecgen

b; ,, are the pth Betti numbers of the connectivity componéntsf Cgen, b, are the Betti
numbers of Mand Q is a polynomial with non-negative integer coefficients

Proof. We show thatX }; can be infinitesimally perturbing such thé\, ¢genis removed.
Consider, for > 0, the compact tubular neighborhoods

Ue(€) = {x € M|disty(x, €;) < ¢} (20)
of connectivity components; C ¢ \ Cq4en, Where dist denotes the Riemannian distance

function induced by. We introduce a vector fieldl, given byry Vo H in M \ U(¢;), and
in the interior of evenU,(¢;) with €; C €\ Cgen, by

Xely =y VgH|x + €h(x)VoH| . (21)

Here,h € CL(U.(¢)), [0, 1]), obeyingh|e, = 1 andh|yy, ;) = O is strictly monotonic
along the flow lines generated by V, H. 1 exists becauseé \ Cgenis a disjoint union of
Cl-manifolds.

Forall¢; C €\ Cyen, Vg H is strictly non-zero irU.(¢;), as shown above. We have

g(Xe, VoH) = (|lry Vg H||2)(x) + €h () (| Ve H|5) (x).

where we have used thesymmetry ofry, and||X||§ = g(X, X). The first term on the
right-hand side is non-zero on the boundaryllf¢;), while the second term vanishes.
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Moreover, the second term is non-zero everywhere in the interiog @;). Therefore X
vanishes nowhere il (¢;). Hence X, is a deformation ofry V, H, with critical setgen,.
Notably, €g4en cannot be removed in this manner, since it contains critical poinks. of
Sinceg(X., Vg H) is strictly positive in everyU.(¢;), X, generates a gradient-like flow.
Since || X — myVgH|; < O(e) everywhere onM, one can pickX, arbitrarily close to
7wy VgH in the L*°-norm onI(TM) induced by| - ||,. Carrying out the Conley—Zehnder
construction with respect to the flow generatedXyyields (19). This result does not
require the assumption of normal hyperbolicity®n O

3.4. Approach via the Morse—Witten complex

We will next provide a different derivation fL9), based on the construction of the
Morse—-Witten differential complei,6,9,21,26,27,29-31,36,39]he motivation is to clar-
ify the orbit structure of the gradient-like system, and to devise an explicit construction that
relates the Morse—Witten complexes of the free and constrained system to one another. This
in particular only involves the corresponding theory fion-degenerat®orse functions.

Let us to begin with briefly recall the basic framework of this construction.Méte
a compact, closed, orientable and smoetmanifold, and letf : M — R be a Morse
function. LetC? denote the fre&-module generated by the critical points ffwith a
Morse indexp. The selC = @,C? is the freeZ-module generated by the critical points of
f, and graded by their Morse indices. There exists a natural coboundary operatdor—
cP*1, with § 0 § = 0, whose construction we recall next, f£,9,17,36]

Introducing an auxiliary Riemannian structure #h we let W, and W, denote the
unstable and stable manifold of the critical paimtf f under the gradient flow, respectively,
and assign an arbitrary orientation to evé¥y . The orientation of\/, together with the
orientation ofW, at every critical point: induces an orientation d¥,F. Morse functions,
for which all W, and W; intersect transversely, are denselit? (M). The dimension of
W, equals the Morse index(a) of a, and the dimension of the intersectidf(a, ') :=
w;N W; is given by maxu (a) — i (a’), O}. For pairs of critical pointa anda’ with relative
Morse index 1, say(a) = u(d’) + 1, M(a, &) is a finite collection of gradient lines that
conneciz with @’.

The intersection oM(a, a’) with any regular level surfacE. of f with f(a) < f(X.) =
¢ < f(d) is transverse, and consists of a finite collection of isolated points. Then, one
picks the orientation o, which, combined with the sectiovi, f of its normal bundle,
shall agree with the orientation 8. The submanifoldsv, . := W, N X. and W;,C =

WJHEC of X, are smooth, compact and closed, with complementary dimensians and
orientations picked above. Hence, their intersection number, which is often in this context
written as(a, 8a’) := #(W, W(jc), is well defined20]. The coboundary operator of the

a,c’

Morse—Witten complex is defined as thdinear maps : C? — CP*1, defined by

8d = Z (a, 8d')a.

w(@=p+1

Theorem 3.2. The cohomology of the differential compl@x §) is isomorphic to the de
Rham cohomology of Mkers/im § = H*(M, Z.).
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The proof can for instance be found[#17,29,36] If (a, 5a’) # O for a paira anda’ of
critical points with a relative Morse index 1, we will say that they are effectively connected
(by gradient lines).

As is well known, the existence of the Morse—Witten complex implies the strong Morse
inequalities in the following manner. Let? := ker§ N CP denote thepth cocyle group,

BP C CP? the pth coboundary group, anll” := Z? \ BP the pth cohomology group under
8. Thus, dimH? = b,(M) by Theorem 3.2From

dimC? = b,(M) + dim B? + dim BP*1,

where dimC? = N, (the number of critical points of with Morse indexp), follows:

D AN, = " APhy(M) + (142) Y AP~tdim BY (22)

p=0 p=0 p=1

(bothB® andB?" 1 are empty). The coefficients of the polynom@(r) = >~ A”~1dim B?
are evidently non-negative and integer. Clearly, @ifis the number of critical points of
Morse indexp that are effectively connected to critical points of Morse ingeex 1 via
gradient lines off.

3.4.1. Comparing the complexes for the free and constrained system

The goal of our discussion here is to devise an explicit construction that relates the
Morse—Witten complex of the free systefm, H) to the one on the critical manifold
(Cgen Hleye,), by a deformation of the gradient-like flagy. This will yield (19).

Let ¢; denote theth connectivity component ofgen, andA; = {a;1, ..., a;n} the
critical points ofH contained irg;. Furthermore, let.(a; ) be the associated Morse indices
of H: M — R, andH; := H|g, denote the restriction aff to ¢;. By Proposition 3.3and
Corollary 3.3 H; : ¢; — R is a Morse function, whose critical points are precisely the
elements of4;. The indexu(¢;) of €; equals the number of negative eigenvalues of the
Hessian ofH at anyq; , € A; whose eigenspace is normaldp

The Morse index ofz; , with respect toH; is thus u(a;,) — u(&;). To define the
Morse—Witten complex associated @@, we introduce the fre&-module generated by
the elements aof4;, graded by the Morse indicgsof the critical points ofH;,

C;, = eapcl.”.
To construct the coboundary operaser. €/ — C{’H, one uses the gradient flow ah
generated byd;, thus obtaining

kers;

—— = HY(¢, 7). 23

mo; (€, Z) (23)
Application of(22) shows that for everg; € Cgen,

D APNip =D APhy(&) + (1+1) Y 2P tdimBY, (24)

p p p

Wherer is the pth coboundary group of the Morse—Witten complexafandX; , is the
number of critical points off; on ¢; of Morse indexp.
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Since every critical point off lies on precisely one generic componéntthe number
N, of critical points of H with a Morse index; is given by

Np = Nip
i
Thus, combining24) with (22), one obtains

Do Wby (@)

i,p;¢;eCgen

=YW, (M) + A+ 1) Y a7 dimB— S dim B!
q q C[GCgen

Hence,(19) is equivalent to the statement that the polynomial on the last line, which is
multiplied by (1 + 1), has non-negative integer coefficients.
By a homotopy argument, we will now prove that for @l

dimB? > " dimp{ (25)
Qieegen

holds, thus obtaining an alternative proof(@B). The main motivation here is to give an
explicit construction that geometrically elucidates this relation, noting that the left-hand
side is defined by the flow of the ‘free’ gradient-like system correspondiridftav, H),

while the right-hand side is defined by the constrained gradient-like system corresponding

to (M, w, H, V). We note that dinBlf’_“(c") denotes the number of critical points Efwith

a Morse index; in ¢;, which are effectively connected to critical points of Morse index
p + 1in ¢; via gradient lines of the Morse functiaoli; on &;. Therefore, the sum on the
right-hand side of25) equals the number of those critical pointskfwith a Morse index

g, which are effectively connected to critical points of Morse ingleix1 via gradient lines

of the functionsH o j; on all genericg;. Here, j; : & — M denotes the corresponding
inclusion maps.

3.4.2. Proof of (25)

Our strategy consists of constructing a homotopy of vector fieJdsvith s € [0, 1],
whose zeros are hyperbolic and independent which generate gradient-like flows. They
interpolate betweem; := Vg H, andvg, which is a vector field that is tangent &yen,

For everys € [0, 1], we construct a coboundary operator via the one-dimensional integral
curves ofvg that connect its zeros. These coboundary operators are independeahdf

act on the fre¢Z-moduleC of the Morse—Witten complex associated 8, H). (25) then
follows from a simple dimensional argument.

Lemma3.1. There existsg € I'(TM), which is gradient-likgand tangent ta@qe. Further-
more the zeros ofg are hyperbolicand identical to the critical points of H. The dimension
of any unstable manifold of the flow generated-hy equals the Morse index of the critical
point of H from which it emanates
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Proof. We recall the vector field . constructed in the proof &froposition 3.6and consider
the compact tubulas-neighborhoodd/. (¢gen), defined similarly as ir20). Furthermore,
let 0 = Q2 (resp.Q = 1 — Q) be g-orthogonal, smooth tensors GitJ (€gen) of fixed
rank An — k) (resp. Z), with Ker{Q(a)} = N,€gen (resp. KefQ(a)} = T,Cqer) for every
a € Cgyen

Wegdefineuo as follows. InM \ Uc(€gen), it shall equalX,, and that forc in Ue(Cgen), it
shall be given by

vo(x) i= (v Vo H)(x) + h(x)(QVyH)(x),

whereh : Ue(€gen) — [0, 1] is @ smooth function obeyingl¢,., = 1 andh |y, ¢yen = O.
In particular,s is assumed to be strictly monotonic along all non-constant trajectories of
the flow generated byy V, H, and d: shall vanish or€gen.

It can be easily verified thaty possesses all of the desired properties. It generates a
gradient-like flow, since outside @&f.(Cgen), (V¢ H, vo) = g(V H, X.) > 0, as has been
shown in the proof oProposition 3.6In the interior ofU.(Cgen), one findsg(V, H, vg) =
lwvVeH|2 + hl|QV¢H |3, due to theg-orthogonality both ofry and Q. The first term
on the right-hand side vanishes everywher&gg, but at no other point it/ (Cger). The
second term equalisQVang on Cyen Since evidently,QVgH|¢gen is the gradient field
of the Morse functiont|¢,,, : €gen — R relative to the Riemannian metric Gf¢gen
induced byg, its zeros are precisely the critical points Bfon €gen, and it possesses no
other zeros. Becauggvo, V,H) > 0 except at the critical points @f, it is clear that-vg
generates a gradient-like floyw ;, so thatH is strictly decreasing along all non-constant
orbits. Furthermore, it is clear from the given construction thas tangent tagen.

To prove the remaining statements of the lemma, we note that the Jacobian magrix of
ata in a local chart is given by

Duo(a) = (D2H)* + (P, — Qu)(D2H)*. (26)

There is no dependence @nbecause ¢, = 0. Furthermore(D2H)* is defined as
the matrix g H j|,] in the given chart, and?, denotes the matrix ofry(a). Normal
hyperbolicity follows from the invertibility ofDuvg(a), which is verified in the proof of
Lemma 3.1 O

Lemma3.2. Letv, := sV H + (1 — s)vo with s € [0, 1]. Then the flowy, ; generated by
—vy is gradient-like for any € [0, 1]. The zeros of, are hyperbolic fixed points aof; ;,

and independent of s. Thuke dimensions of the corresponding unstable manifolds equal
the Morse indices of the critical points of H from which they emarfateall s.

Proof. We considerg(V,H, vy) = s||VgH||§ + (1 — 5)g(V4H, vg). The first term on the
right-hand side is obviously everywhere positive except at the critical poirfis ahd the
same has been proved previously for the second term. Fhdgcreases strictly along all
non-constant orbits af; ;, hence the latter is gradient-like. The Jacobian,ait a critical
point of H is given by

Dus(a) = (12, + (1 — $)(Ps — Qa))(D2H)".
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Duy(a) is invertible for alls € [0, 1], since(D,fH)ti is invertible, and spd®, — Q,} C
(—1,1). To prove the latter, we first observe that spec- 0, } € [—1, 1] is trivial, because
P, and Q, both have a spectruf®, 1}. {—1, 1} is not included, because otherwigg,Q,,,
respectively,P, Q,, would not have a full rank, in contradiction @orollary 3.1 O

By smoothness oy, it follows that,; is C* in s. Thus,s smoothly parameterizes a
homotopy of stable and unstable manifolds/ef emanating from the critical points &f.
Since the fixed points af ; are independent af and the dimensions of the corresponding
unstable manifolds are equal to the Morse indices of the critical points @fe consider,
for every value ofs € [0, 1], the freeZ-moduleC = @,C? that is generated by the
critical points ofH, and graded by their Morse indices. For evenye define a coboundary
operator onC, using ; as follows. Picking a pair of critical points df with a relative
Morse index 1, we consider the unstable manif#ig, of a, and the stable manifole‘fa,
of a’ associated tg ;. Sinces parameterizes a homotopy of such manifolds, they naturally
inherit an orientation from the one picked fo& 1, in the construction of the coboundary
operator of the Morse—Witten complex fa¥, H).

Let X'r denote a regular energy surface fita) < E < H(d). W;—La intersectsX g
transversely, becaudg is strictly decreasing along all non-constant orbits generated by
—vs. W ,NZE andsta, N Xk define two homotopies of oriented submanifoldsif. By
homotopy invariance of their intersection number, the coboundary operators are independent
of s, and thus identical to th&operator of the Morse—Witten complex given foe 1.

The stable and unstable manifoldsaf; are either confined to som&, or connect
critical points lying on different;’s. Let us consider pairs of critical points &f with a
relative Morse index 1 that lie on the same compor&nt Cyepn, and the corresponding
stable and unstable manifoldsya ; which are contained ii;. Sincevgl¢, is the projection
of Vg H|¢, 1o T¢;, these stable and unstable manifolds are the same as those which were used
to define the Morse—Witten complex ¢6;, H;). Using only stable and unstable manifolds
of Yo ; contained irlgen, We constructan operatbacting onC inthe same manner in which
the coboundary operator was defined, thus obtaifiiag®d;s;, wheres; is the coboundary
operator of the Morse—Witten complex associated to the (dairH;). Let P; : C — C;
stand for the projection of the fré&-moduleC generated by all critical points off to
the one generated by the critical points contained;inEliminating all integral lines of
—vg that connect critical points on different connectivity componeniSggf in the above
construction, one sees thiat= P;8 P;, thuss = P;§P;. Hence, clearly,

dim(@m 8|cr) > dim@im §|c»),

which precisely corresponds (85). This completes the proof.

4. Qualitative aspectsrelated to critical stability

So far, we have established that in the generic case, the connectivity components of
¢ = Cgen are embedded submanifolds of dimensign 2 k) equal to the corank oV.
Furthermore, we have seen that the topology of the symplectic marifatshforces the
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existence of connectivity components&yjen of certain prescribed indices with respect to
the auxiliary gradient-like flovg;,.

In this section, we focus on the physical dynamics, characterized by théflgenerated
by XV, of the constrained Hamiltonian systei, w, H, V) in a tubulare-neighborhood
of €gen, and particularly on the issue of stability. Letagain denote the auxiliary Kahler
metric introduced irSection 3 with the induced Riemannian distance function given by
distg (in contrast to the Carnot—Caratheodory distance funei¢ng induced byg, which
will also be considered). We recall that a paint Cgenis stable if there exisid(e) > 0 for
everye > 0, so that for al¥, distz(®;(x), a) < € holds for allx with distz (x, a) < 8(e).

To elucidate the key differences between the local dynamics in the vicinityeffor
the cases of integrable and non-integrablldet us first describe the situation whéeves
integrable. As proved i€orollary 3.2 M is foliated into Z-dimensional symplectic sub-
manifolds which interse@gentransversely. Thus, on every le'sf the equilibrium solutions
are generically isolated points. Let the linear operagrcorrespond to the linearization
of XZ on T, M for somea € N'N €gen, and restricted to the fiber, = T,N C T,M. Its
spectrum, if itis not purely imaginary, conclusively characterizes the stabilityvoé refer
to this as the asymptotically (un)stable case. If the spectru2,0f purely imaginary,
which we refer to as the critically stable case, it is well known that if there exists a local
Lyapunov functionL  : U(a) N N'— R for a, thena is stable.

If V is non-holonomic, the situation is similar in the asymptotically (un)stable case, but
drastically different in the critically stable situation. In the critically stable case, the presence
of a local degenerate Lyapunov function for a single equilibriuenCgyen is of limited use,
since there is a whole submanifagenN X (the H-level set for the energ¥ of the initial
condition) of valid equilibria for a given energlf. One may relax this condition to the
existence of the following class of functions.

Definition 4.1. Let Vgi denote the component of the gradient normal to €gen With
respect tog at Cgen. Let U(a) be a disg-small open neighborhood af € €gen. A local,
degenerate, almost Lyapunov function fois a classC? function L : U(a) — R, which
satisfies(VglL)(a’) =0foralla’ € €genN U(a), and||V,L||, > Oforallx € U(a) \ Cgen.
Furthermore(V, dL)|, is positive definite quadratic form a¥, Cgenfor all a’ € U(a) N
Cgen aNdL(P;(x0)) < L(xo) for all xg € U(xp), and allt such thatd, (xo) € U(a).

Notably, L defined here is not a local degenerate Lyapunov function, be€aas&(a)
is not a critical level set (we remark that this would be equivalert being a Morse—Bott
function inU(a)), on whichL is extremal.

While the existence of. guarantees that the orbi, (xo) remains within a tubular
e-neighborhood o&genN U(a) for all ¢ such that?, (x) € U(a), it does not imply stability
of a € €genN U. There is an additional, necessary condition on the rational independence
of the frequencies of the oscillatory linear problem that must be imposed. Otherwise, an
inner resonance, connected to the appearance of small divisors, occuts(ef)de U(a)
may evolve away from, in a diffusive motion along the higher flag elementd/ahat are
approximately tangent t@gen, While alongV, which is transverse tdgen, the motion is
bounded and oscillatory.
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From the analysis iBection 3itis clear that for every connectivity compon@itC Cgen
of index (€;) = 0 (with respect tap;), the HamiltonianH is a local degenerate, almost
Lyapunov function for all of its points. The minimuai of H|¢, on<; is alocal minimum of
H, and hence stable (sinéeserves as a Lyapunov function o). Hence, in particular, it/
is integrable, all points o#; are stable it (¢;) = 0. We also note that on the connectivity
components?; with index .(€;) > 0, H is never a local degenerate, almost Lyapunov
function.

The main focus in this section will be to discuss issues of this type. However, an
essential part oBections 4.1.2 and 4.2\&ill be in mathematically non-rigorous terms,
since a rigorous treatment of the matters addressed there would fall into the domain
of KAM and Nekhoroshev theory, and is beyond the scope of the present
work.

A concrete aim in this discussion is to arrive at stability criteria for equilibria of the
constrained Hamiltonian syste, w, H, V). From an instructive, despite elementary,
application of averaging theory, we conjecture a condition for the critically stable case that
involves an incommensurability condition imposed on the frequencies of the linearized
problem, as remarked above. In order to elucidate its geometric content, we study the
dynamics in the vicinity of a critically stable equilibrium in a geometrically invariant form
that is adapted to the flag &f Invoking a perturbation expansion based on this description,
we argue that the incommensurability condition, which might merely correspond to an
artifact of the averaging method, cannot be omitted. A rigorous proof of the conjectured
stability criterion is left for future work.

4.1. Stability criteria

Leta € Cgen and pick some small neighborhodtla) C M together with an asso-
ciated Darboux chart, with its origin at The equations of motion are given by, =
P(x))JH x(x;) = X,‘;(x,), where the coordinates are given by= (x1, ..., X", xy11,
..., x2p), andJis the symplectic standard matrix. Furthermate, abbreviate9, H, and
Pisthe (21 x 2n)-matrix representing the tensoy . w-skew orthogonality ofry translates

into P(x)JX (x) = JP T (x)X (x) for all vector fieldsX.

Proposition 4.1. There exists a chart in which the equations of motion have the form
3 (e 20) = (Q0y1 + Y(z1, ¥, Z(zi, y)) € R¥* x R0, (27)

In particular, £2g corresponds to the restriction of [)f)(O) to Vo, and|Y(y, 2)|, | Z(y, 2)| =
O(yllz) + O(yl?.

Proof. Ina sufficiently small vicinityy ¢ R?" of the origin (corresponding 9, one infers
from Corollary 3.1that 7,Cgen @ Vo = R fora € U N Cgen Accordingly, we choose
local coordinates € U’(0) ¢ R2"—K on Cgen andy e Vo, noting that the decomposition
x = a(z) + y foranyx € U c R? is unique, where: : R¥*~% < U is the (smooth)
embedding. Ley denote the coordinates $fwith respect to some family of basis vectors
for Vp. Then,(27) evidently follows from Taylor expansion. O
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4.1.1. Asymptotic (in)stability
If sped 20} UiR = @, there exists, by the center manifold theorem, a coordinate trans-
formation(y, z) — (¥, z), such tha{27) becomes

3 (ry 20) = (203 + Y (51, 20), 0) (28)

[40], whereY(0,Z) = O for all z. Thus,a € €gen is asymptotically unstable if there

are eigenvalues with a positive real part, and asymptotically stable if all eigenvalues have a
negative real part. I¥ is integrable, asymptotic stability isimpossible, because the dynamics
is Hamiltonian on every integral manifold. However}fis non-integrable, there is, to the
author’s knowledge, no obstruction to the existence of asymptotically stable equilibria,
since the flow map is not symplectic.

4.1.2. An elementary application of averaging theory

In the case of critical stability, one has spg} = {iw1, ... , iwx} with w; € R\ {0} for
i=1,...,2k. Letus for the context of an averaging analysis assume that the vector fields
on the right-hand side R7) are real analytic with respect tg, z). We apply a complex
linear coordinate transformation that diagonalizas and denote the complexified, new
coordinates and vector fields again @y z), andY(y, z), Z(y, z), respectively, by which
we find

& (yi, z1) = (diagiw)y; + Y1, 20), Z(yi, z1)) € C& % C20 =0, (29)

wherew = (w1, . . ., wz). Complexifying(27), the continuation otgenmto(cz" is defined
as the common zeros %0, z) and Z(0, z) for z € C2"—K),
We next introduce polar coordlnates ®) € RZk [0, 271)2k and(J 0) € R2n—H x

[0, 27)2"=K) in terms of y" =: €® 1" andz® =: &% J* with r = ,2k ands =
1,...,2n—2k. Inparticular/ e RZI‘ J e R?~ 2% 4 ¢> € [0, 27]% = T% (theZc -dimensional
torus) and e [0, 27]%~2% = T2~ For brevity, let &v := (%101, ..., %%1%) and
elw = (@%wl, ... %20-by2n=h) foryv e C¥* andw e C¥— %, (29) is then easily
seen to be equivalent to (the dot abbreviatgs
I = Rele?y(€?1, €7 )), é = w + Im{e " ?diag(d;) Y(€?1, €7 J)}. (30)
J=Rele z@E?1, D), 6 =Im{e diagd,)Z(E?1, €7 1) (31)

Let us assume that := |I(0)] < 1, and|J(0)] < O(e?). We then introduce rescaled
variablesl — eI andJ — €2J.

Analyticity of Y(y, z) and Z(y, z) with respect to(y, z) implies that the power series
expansion with respect td%d and & J converges fok sufficiently small. Accordingly,
(30) and (31yield

I = Z €|mI+2\p|—1Fr%p(L J) g (m.@)=¢r) d(p.0) (32)
Im|+1pl=2
7= Z 6|M\+2lp\—2G~rvnp(L J) g(me) gp.0) (33)

lm|+|p|=2
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<J5r =w, + Z e""'*z‘p'*ld)rmp(l, J) gl (m.¢) =) ei(p,(%, (34)
lm|+|p|>2
Oy = Z 6|m|+2\17|*2@s;mp(1’ J) g (m.é) ei<17,9)’ (35)
lm|+|p|>2

where we introduced the multi-indices € Z% andp e Z2'~%, with |m| := Y |m,| and
|pl := > |psl. In this Fourier expansion with respect to the-geriodic angular variables
¢ andé, every Fourier coefficient labeled by a pair of indides, p), is a homogenous
polynomial of degreém| in I, and of degreép| in J.

If the components ofy are all mutually rationally independent, one may consider the
averaged quantitie (¢) — f; = (2n) ™" S do fi(¢). From(26), Y(y, z) andZ(y, z) are
O(|y]), thus their power series involve termé€"e?) with |m| > 1, but none withjm| = 0.
Averaging(32)—(35)with respect tap thus gives

I=&&Fd,7,6, J=0 6=0 (36)

for some functionF, where the bars account for averaged variables. Thus, if we in addi-
tion assume that there exists a local degenerate almost Lyapunov function with respect to
CgenN U, it follows for the averaged equations of motion thatis bounded for alk. In
particular, if the incommensurability condition holdd| is then also bounded for al

anda (respectively, 0) is, for the averaged system, stable. Based on these insights, and on
intuition stemming from KAM and Nekhoroshev theory, it is thus natural to conjecture the
following stability criterion.

Conjecture4.1. Letd; C €genbe a connectivity component of the critical manifadd
leta € ¢;, with spec{DX,‘g(a)}\{O} ={iwy,...,lwy},andw; € R\ {O}fori =1,..., 2k.
Assume that(1) the frequencies, are rationally independengnd (2) that there exists
a local degeneratealmost Lyapunov function with respectdpn U(a), in the sense of
Definition 4.1 Then a is stable in the sense of Nekhoroshev. In particutandition(2) is
always satisfiedby the HamiltonianH) if the index of¢; is u(¢;) = 0.

4.2. The relationship to sub-Riemannian geometry

To elucidate the geometric nature of the requirement of rationally independent frequen-
cies, we will now approach the discussion of critical stability from a different point of view.
This discussion involves issues that are central to sub-Riemannian ge@be&y9,34]

We study the time evolution map in a tubulavicinity of U(a) N Cgen by invoking
a geometrically invariant Lie series that is adapted to the elements of the fldgRyf
an asymptotic analysis, we explain the mechanism by which an instability can arise. The
reason is that if the eigenfrequencies of the linear problem are not incommensurable, the
problem of small divisors appears. This picture seems to be familiar from the perturba-
tion theory of integrable Hamiltonian systems, but we note once more that the lack of
integrability here originates from the non-holonomy of the constraints. A rigorous treat-
ment of this last part of the analysis is beyond our current scope, and left for future
work.
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4.2.1. Dynamics along the flag &f
Let U denote a small open neighborhobiof a € ¢, and assume thalge, := €N U
satisfies the genericity condition ®heorem 3.1

Lemma4.l. Let&qen = € N U have the genericity property formulated Tineorem 3.1
Then there existg > 0 such that every point € U with dg(x, Cgen) < € is given by

x=exp Y, Is|<e

for someY e I'(V) with ||[Y|lg,, < 1,a € Cgen(exp, Y denotes thd-parameter group of
diffeomorphisms generated bywith exp, Y = id).

Proof. We choose a spanning family; € F(V)}{" of V, with |Y;|lg,, = 1. If for all
a € Cgen, T4Cgen CcONtains no subspace ¥, then

exp (t¥1+ - - + 1Y) (Cgen NU

is an open tubular neighborhood &fenin U, for #; € (—¢, €). Because the normal space
N,Cgenis dual to the span of the 1-formsFgat a, this condition is satisfied if and only
if the matrix [dF;(Y;)] = [Y;(Y;(H))] is invertible everywhere oi€gen According to
Proposition 3.1this condition is indeed fulfilled. O

Hence, there is an elemefite (V) with ||Y|l,,, < 1, so thatx = ¥,(a) for some

0 < € < 1. Sincea € €gep, it is clear that under the flow generated ¥y;, @+.(a) = a,
thus the solution of6) with initial conditionx is given by

Wl (a) := ®; 0 ¥e(a) = (P, 0 W 0 P_y) ().

Ylis, in particular, the 1-parameter group of diffeomorphisms with respect to the variable
¢ that is generated by the pushforward vector field

Y, (x) = @Y (x) = dd; 0 V(D (), 37)
where db; denotes the tangent map associated,térom the group property,; = ®,.Y;,
it follows that:

Y, = 0sls=0Ps Yy = [Xpy, Vi, (38)
everywhere inyJ.

Next, we pick a local spanning family; F(V)}izi1 for V that satisfiea(Y;, Y;) = jij,
with

- 0 1;
J = .
-1 O
Furthermore, defining;(-) := o (Y;, ), 7y = J'¥; ® 6;, where.J' are the components of
Flt=—Jin particular,

X}y =my(Xy) = —-Yi(H)IY;

in the basigY;}%,.
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The following proposition characterizes the orbit emanating froim terms of nested
commutators with respect 9.

Proposition 4.2. Let f; F; € C*°(U), whereF; := Y;(H),i =1, ..., 2k, and assume that
Fi(Wl(a)), f(¥!(a)) are real analytic ine. For X, Y € I(TM), let

LyX =[Y.....[¥.X]]

denote the r-fold iterated Lie derivative. Thdar sufficiently smalk,

0 FWL(@) = = F (WL @)T* Y S(L5 YO (f o Wh(a). (39)

r>0
Proof. Clearly,

3 f(W (@) = X (H(W(a) = —F (¥ (@) TV (H (Wl ()
= —F (W (@) T*WL Y1) (f o W) (a). (40)

Using the Lie serie@, Y, = 3_ (¢"/r!) LY, Yi, we arrive at the assertion. O

Proposition 4.3. Assume that;—g € I'(V), and Iet{Yj}%k be the given local spanning
family of V. Then[fYt Y; € I(V;), whereV; is the ith flag element of .V

Proof. Since®,, : I(V) — I(V), Y; is a section oV for all  if it is for + = 0. The claim
immediately follows from the definition of the flag &f. d

Proposition 4.3mplies that there are functioaé(t, ) € C*°(U),i = 1, ..., 2k, so that
Y;(x) = d'(t, x)Y;. The next proposition determines their time evolution.

Proposition 4.4. LetY;—g = agY,- define the initial conditiopand introduce the matrix
2, 1= [Yi(F) ()T,

Then pointwise in x
a" (t, x) = (eXP(—12x)) " ad + F;(x)R™(t, x)ab, (41)

where

: "o t ~
R, x) = J "k / ds(exp(— (1 — ) 21w (Y1, s Yi], Ya).
0

Proof. The initial condition at = 0 is given byYy = a})Y;, that is, bya' (0, x) = ai). Thus,
by the definition ofY; in (37), one has; = d)®,.Y;, so thatd (t, )Y; = a{)®,.Y;. From
o, Y)) = Jij, Jik = —Jui andiimfml = -4,

d(t,x) = —aiw( @Y, Y.
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Now, taking thes-derivative on both sides of the equality sign, one finds

; - ~Kk
" (t, x) = —ahw (X}, BruYi], YOI
. ~i . ~il ~ki ~
= —d'(t, )Y, (F) 0T — ahFj0 7" T oY, $,.Y1, Y.

Using the variation of constants formula pointwisexjrone arrives at the assertion. O

4.2.2. Non-holonomy and small divisors

Using the description of the dynamics in the vicinityoflerived above, we will here
use the small parametefor an asymptotic expansion. The intention of this part of the dis-
cussion, which is not rigorous, is to explain the geometric origin of the incommensurability
condition on frequencies iGonjecture 4.1

We consider the following simplified situation:

(1) 2, = £2, constant for alk in U.
(2) spe¢s2} = {iwy, ..., oy}, with @, € R.
(3) 1821l := suplwy| K (1/€).

Let us briefly comment on the generic propertiegsf. Writing 2 = J A, we decompose
the matrixA = [Y;(Y;(H))(a)] into its symmetric and antisymmetric pads, andA_,
respectivelyA_ = [[Y}, Y;](H)(a)]/2 vanishes ifV is integrable, which one deduces from
Xula € VaL for all a € €gen, and the Frobenius condition. The linear systeea jA+c_z is
Hamiltonian, hence the spectrum®i . consists of complex conjugate pairs of eigenvalues
iniR ifitis purely imaginary (hereg := (a?, ..., a®)). Considering/ A_ as a perturbation
of JA,, we may generically assume that all frequenaiesire distinct from one another,
and that there are both negative and positive frequencies.

Under the simplifying assumptions at hand, let us com1g to leading order ire.
From(41), one infers

Y, = ab(exp(—1£2))5Y; + Y O(lx))Y;,

since| Fj(x)| = O(|x|]) = O(e), which follows fromF;(a) = 0. Thus,

[Y:. X] = afexp(—12)'[Y;, X] + Y _ O(e)[¥;. X] + Y _ O(D)Y;

forall X € I(TM), andx € Uc(a). Assuming that all objects in question are of cl&ss,
iterating the Lie brackefy,r-fold produces

(1’[ al (exp(—1)'r + O(e)> [Yip, Yigs o Y Y1, 0,

m=1

plus a series of terms with less thanested Lie commutators that contribute to higher order
corrections.

Let us, for the discussion of the leading order terms along each flag elemgnoofit
the relative errors of order @). By the assumption of smoothness, our considerations are
valid forr < O(e™1). Let us consider the term
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Fy (WL @)T™(Ly, Yo (f o Wh(a) (42)
for fixedr. It is easy to see that

Fi(W (@) = Y(Fy)(a) + O, (43)
due toF;(a) = 0. Therefore,

F(W.@)T" = cexp—182)a} 2%, + O(), (44)

from a straightforward calculation.
Hence, the terms withnested commutators {@2) are

r+1

i jol
o exp(—1)] 2]

x (1"[ alr (exp(—trz));',"n> [Yir [ [ Y. - (@) + O ),
m=1

as long as digt(¥/(a), a) < O(e). This implies that forf € C*°(U),

6r+l t ; )
.f(wé(a>>~f<a>+; & /O ds ab exp(—s2)I 2,
X (H ag’ <exp<—sf2>>’}£2> [Yir, - Y, Y, - 1D (@), (45)
m=1

up to relative errors of higher order éfor every fixedr.

If f is chosen as théth coordinate function’, so thatf(¥!(a)) = xi, the quantity
[Yi,,....[Y:,. Y1, ... 1(H(a) is theith coordinate of the vector field defined by the brackets
ata. Consequently45)is the component decompositionxjfrelative to the flag o¥ ata,
to leading order ir.

By the given simplifying assumptions, sg&z c iR \ {0}, and the norm of exp-s£2)
is 1, independent of. Consequently, the integrand @f5) is bounded for alk. It follows
that if therth integral in the sum diverges, it will become apparent onlyfer O(1/¢").
This would correspond to an instability along the direction of the flag elevienhile
the leading term witlr = 0 is bounded for alt, terms withr > 0 can diverge.

We next write

2%k
a(s) = exp(—s$2)ag = Z Age, EXP(—iwys), (46)
a=1
where{e,} is an orthonormal eigenbasis @fwith respect to the standard scalar product in
C%, and spef2} = {iwy}. The amplitudest, € C are determined by the initial condition
ad@t=0) = ag, Which we assume to be non-zero. By linear recombination of the vector
fieldsY;, one can set, = §; ,. Then,(45) can be written as

Er+1

T 2 i O [ Y- 1D @), (47)

r=0 ’ Lig,...iy
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where

t r . -
Iiiy,....i, (D) :=/ ds ;A (1_[ Ajm> e @t =1 @jn)
0 -

Ia)]Al —|t(w+ T wi )
= | |A 1+ =1 @im) _ 1) . 48
w; + § me1 @ <m= ]’">( ) (48)

We note that the sum of frequencies (of generically indefinite signs) in the denominator on
the last line raises the problem of small divisors. We also remark that evidently, the nested
commutators vanish if all indices, . . ., i,,  have equal values, as it should be (otherwise,
the solutions would always diverge).

4.2.3. Rational frequency dependence and blow-up of solutions
Let us next discuss the situation in which the small divisors approach zero. To this end,
we introduce the set

IOW = iy, .oty OI 2 \ Uit O}y (49)

which we endow with the nortid ™ (1) || := supy)c50 ([ 1)1, and let] A|| := sup_,
{|A;|}, whereA; areC-valued amplitudes.

,,,,,

Furthermore, letl := {w;, ..., wx}, and let
Ui=U+-+ U, (50)
N e’
rtimes

denote its-fold sumset, which is the set containing all sums efements oil.
For two sets of real numbetsand®3, we define

di, B) = |nf {|a,~—bj||ai e U, bj € B}. (51)
LJ

Then, it follows from(48) that if d(41,., —41) > O,
137 @1 < dty, =0~ 2]l A" (52)

(the sum over frequenciés), _; w;, in (48)is an element ofl,, and can only equatwy if
d@l,, =) = 0). However, ifd(4l,, —4) = O, there is a tuple of indic€g; i1, ..., i,} such
that

,
Iiy...i, (1) = —torAr [ ] A (53)

m=1

in case of which|3® ()| ~ r, that is, a divergence linear infor larger (recalling that
the present asymptotic considerations requite e ~1). Only if there are simultaneously
positive and negative frequenciegil,, —il) = O is possible, but due to the remark at the
beginning ofSection 4.2.2this situation must generically assumed to be given.

As an illustration, the following picture holds fer< 2. The fact that for = 0, [|3© (7) |
is bounded for alk is clear. Forr = 1, the first flag elemen¥; = [V, V] is in question.
The condition for the emergence of a divergence is dtiglt —$() = 0. This is precisely
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given if there is a pair of frequenciesw; of equal modulus, but opposite sign. Foe 2,
assuming thad(4l, —41) > 0, the conditiond(i2, —44) = 0 implies that there is a triple of
frequencies such that;, + w;, = —wi,, ij € {1, ..., 2k}. If this occurs, the solution will
diverge in the direction of the second flag elemént,= [V, [V, V]]. The discussion for
r > 2 continues in the same manner.

Hence, our conclusion from this asymptotic analysis is thagif., —) = 0 for some
r, then|| 37 (1)|| = O(r) for t — oo.

The physical insight gained from the above discussion can be summarized as follows. If
the frequencies of the linearized problem fail to satisfy the incommensurability condition
di,, =) > 0 for all r, the equilibriuma is unstable. However, the time required for an
orbit to exit from a Riemanniaa-neighborhood/. (a) is very large. In fact, assuming that
dl,., —4) = 0forsome- < deq V) (the degree of non-holonomy &1, atimer ~ O(1/¢")
is necessary to exit froiic (@) in the direction of the flag elememt (due to the factoe” /7!
in (45)). We note that the orbit does not drift out fraifa(a) N Cgen in the direction ofV,
owing to the existence of a local degenerate Lyapunov function required in the conjectured
stability criterion. Therefore, this discussion suggests that the incommensurability condition
imposed on the frequencies of the linearized system can indeed not be omitted.

4.2.4. Instabilities in the context of Carnot—Caratheodory geometry

The constrained Hamiltonian syste&M, o, H, V) shares many characteristics with sys-
tems typically encountered in sub-Riemannian geonmét8,19,34] The natural metric
structure in this context is given by the Carnot—Caratheodory distance functipndist
duced by the Riemannian metgclt assigns to a pair of points y € M the length of the
shortestV-horizontalg-geodesic.

If V satisfies the Chow condition, disiz(x, y) is finite for all x,y € M, by the
Rashevsky—Chow theoref,19]. In this case, the Carnot—Caratheodetyall

B (a) := {x € M|distc_c(x, a) < €}

is open inM.

If V fails to satisfy the Chow condition, pairs of points that cannot be joinéd-hgrizontal
gm-geodesics are assigned a Carnot—Caratheodory distanthen,M is locally foliated
into submanifoldsV;, of dimension(2n — rankVgeqv)) (We recall that deg/) denotes the
degree of non-holonomy af), with A in some index set, which are integral manifolds of the
(necessarily integrable) final elemérgeqy, of the flag ofV. On everyN,, the distribution
Vi = j;V satisfies the Chow condition, whejg : N, — M is the inclusion. Therefore,
all pointsx, y € N, have a finite distance with respect to the Carnot—Caratheodory metric
induced by the Riemannian metrifg,, . Every leafN,, is an invariant manifold of the flow
@,

Let {Y,-,}figlm denote a local spanning family @M such thaty;, } spans the flag element
V,. Let theg-length of allY; 's be 1. Then, we define the ‘quenched’ box

degV) dimV,
Boxc(x) ;= exp | D € > 4%, | (|6, €(-1.1)

r=1 ir=1
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in N, , wherex is suitably picked so that € N,. Evidently, if V satisfies Chow’s condition,
N, = M. According to the ball-box theorefb,19], there are constants > ¢ > 0, such
that

BoX.(x) € BSC(x) C Boxce(x).

Carnot—Caratheodomryballs can be approximated by quenched boxes in Riemannian ge-
ometry.

The above perturbative results imply that if there is some: deqV), for which
d(4,, —4) = 0, the flowd, blows up the quenched boxes, and thus the Carnot—Caratheodory
e-ball arounda € Cgen, linearly in ¢, and along the direction o¥,. In fact, BS‘C(a) is
widened along/, at a rate linear in. Forr = O(1/€), @, maps the Carnot—Caratheodory
e-ball containing the initial condition to a Carnot—Caratheodory ball of radius O(1). Thus,
in the context of Carnot—Caratheodory geometry, these instabilities, which have no counter-
part in systems with integrable constraints, are far more significant than in the Riemannian
picture.

5. Autonomous non-holonomic systemsin classical mechanics

In this main section, we focus on the analysis of non-holonomic mechanical systems,
and their relationship to the constrained Hamiltonian systems considered preyiy@sly
The discussion is restricted to linear non-holonorRi@ffianconstraints.

Let (Q, g, U) be a Hamiltonian mechanical system, whérds a smooth Riemannian
n-manifold with aC* metric tensog, and wherd/ € C*°(Q) denotes the potential energy.
No gyroscopic forces are taken into consideration.d*edenote the induced Riemannian
metric on the cotangent bund® Q. For X € I(TM), let 6x be the 1-form defined by
0x(Y) = g(X,Y)forallY € I(TQ). Clearly,g(X, Y) = g*(0x, 6y) forall X, Y € I(TQ).

The Kahler metric of the previous discussion, also denoteg, will not appear in this
section. From here or, will denote the Riemannian metric g, which should not give
rise to any confusion.

In a local trivialization ofT™* Q, a pointx € T* Q is represented by a tuplg’, p;j), Where
¢' are coordinates o, and p; are fiber coordinates iiﬂq*Q, withi, j =1,...,n. The
natural symplectic 2-form associated&bQ, can be written in coordinates as

wo = qui Adp; = —dbp.

6o = p; dq' is referred to as the symplectic 1-form.
We will only consider Hamiltonians of the form

H(q, p) = 385(p. p) + U(q). (54)

In local bundle coordinates, the corresponding Hamiltonian vector Xiglds given by

Xy = Z((a,,,.H)aq,- — (0, H)dp,).



448 T. Chen/Journal of Geometry and Physics 49 (2004) 418-462

The orbits of the associated Hamiltonian fldw satisfy
qi = ap,-H(‘Za p)v P] = _8qu(q7 P) (55)

The superscript dot abbreviatgs and will be used throughout the discussion.

Let .4; denote the space of smooth curyes I ¢ R — T*Q, with I compact and
connected, and letdenote a coordinate dR. The basis 1-formddefines a measure d
The action functional is defined iy: A; — R,

Iy] = /I dr(y"60— H o) = /I d (3 0’ @ — Hg, pa)) (56)

with y = Z(é]iaqi + pidy;). Denoting the base point projection by: 7*Q — 0, let

¢ = (woy): I — Q denote the projection gfto Q. We assume thadic(1)|| is sufficiently
small so that solutions b5) exist, which connect the end poirt&®). Among all curves
y . I — T*Q with fixed projected end pointgd/), the ones that extremiZeare physical
orbits of the system.

5.1. Linear non-holonomic constraints

Let us next impose linear, ‘Pfaffian’ constraints on the Hamiltonian mechanical system
(0, g, U), by adding a ranl distribution W over Q to the existing data, and invoke the
Holder variational principl¢3] that generates the correct physical flowflsQ. The orbits
of the resulting constrained dynamical system posBés$mrizontal projections t@.

We introduce the-symmetric projection tensor associatedifogiven by py = pﬁ, :

TQ — TQ, with

Ker(ow) = W,  pw(X) = X VX € I(TQ),

and its orthogonal complemepty = 1 — pw. We note that in local coordinatesy is
represented by & x n matrix of rankk. The dual ofW, denoted byw*, is defined as the
image of W under the isomorphism : TQ — 7*Q, and likewise fofW*)* := g o W*.
The corresponding*-orthogonal projection tensors dif Q are denoted by, andpy,,
respectively. Our inspiration to introdugg, andpy for this analysis stems from Brauchli
[11].

5.1.1. Dynamics of the constrained mechanical system

Next, we derive the equations of motion of the constrained mechanical system from the
Holder variational principle. For a closely related approach to the Lagrangian theory of
constrained mechanical systems,[&tB].

Definition 5.1. A projective W-horizontal curve iff* Q is an embedding : I C R —
T*Q whose image = 7 o y under base point projection: 7*Q — Q is tangent ta¥.

Lety, : I — T*Q, with s € [0, 1], be a smooth 1-parameter family of curves for which
the end points;(d/) are independent aof (wherec, := 7 o y;).
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Definition 5.2. A W-horizontal variation of a projectiv®/-horizontal curvey is a smooth
1-parameter family; : R — T*Q, with s € [0, 1], for which (3/9s) (7 o ;) is tangent to
W, andyp = y.

Let

' (1) := dls=o0q' (5, 1), G (1) = Osls=0pi (s, 1).

To any W-horizontal variatiory, of a W-horizontal curvey with fixed projections of the
boundaries

(7w 0 y5) (D) = (7 o y0)(3D), (57)

so thatg!|y; = 0, we associate the action functional
Iyl = fl (32 pits. 03 (5.1 = Higs, 0, pls. 1)) .

Definition 5.3 (Holder principle). A physical orbit of the constrained mechanical system
(0, g, U, W) is aprojectivéV-horizontal curveyq : I — T*Q that extremizeg[y,] among
all W-horizontal variationg, which satisfy(57).
Hence, if
570y = 3 pidlor + f S (i — by BV — @ + 0 H) ) = O (58)
1

for all W-horizontal variations ofy that satisfyp’|5; = 0, thenyg is a physical orbit.

Theorem 5.1. Inthe given local bundle chaithe Euler—Lagrange equations of the Holder
variational principle are the differential-algebraic relations

g = pw(@)d,H(q, p), (59)
Po@ b = —pr (@)D H (g, ). (60)
0= pw(q)d,H(q, p). (61)

Proof. The boundary term vanishes duegtd,; = 0.
For any fixed value of, one can writes(r) as

k
P =Y fulq®)Yalg(®),
a=1
whereY,, is ag-orthonormal family of vector fields ove(I) that spandv, ;. Furthermore,
fo € C*(c(D)) are test functions obeying the boundary conditfgiic(d7)) = 0.
Since f, and x are arbitrary, the terms i(b8) that are contracted witty, and those
contracted withy vanish independently. In case ®fone finds

/dr fa(p+ 04H)iY, =0
1
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for all test functionsf,. Thus, (p + aqH),-Y(ft =0foralla = 1,...,k, or equivalently,

,oIV(p + 0,H) = 0, which proveg60).

Sinceyyp is W-horizontal,pw (¢)g = 0, so thex-dependent term iBZ [y;] gives
[ = oyt ol + [ diowa, il =0,
1 1

The components of in the images oba,(q) andeV(q) can be varied independently. Thus,
both terms on the second line must vanish separately, as a consequence of which one obtains
(59) and (61) O

Definition 5.4. The smooth submanifold
S:={(¢g. p)low(q)d,H(g. p) =0} C T*Q
locally characterized bg61) is called the physical leaf.

S contains all physical orbits of the system, that is, all smooth pathR — S ¢ T*Q
that satisfy the differential-algebraic relationsitéfeorem 5.1

Theorem 5.2. Let H be of the form(54). Then there exists a unique physical orbit:
RT — Swith y(0) = x for everyx € S.

Proof. We coverS with local bundle charts 6f* Q with coordinatesq, p). For the Hamil-
tonian(54), (61) reduces to

pw(@g Hgp = g_l(q)ﬁ;rv(q)p =0,

where one uses thgorthogonality ofoyw . Hence(61)is equivalent tqo, (¢) p = 0. Since
Sis the common zero level set of thecomponent functione,b;rv(q)p),», every section

X ="(q, )3y + ws(q, p)dp,
of TS is annihilated by the 1-forms

A5 ) = g (B ) A" + 3y, (B )i dps

fori =1, ..., n (of which onlyn — k are linearly independent), ah
This is expressed by

0= (V0B + (Widyp )by p = (V) Byp + Pryw

which shows that the component®f X determine the projectio;‘);,rvw. Hence, the com-

ponentsy and,o‘];,w suffice to uniquely reconstrucf. Consequently, the right-hand sides

of (59) and (60)determine a unique secticn of TS, so that every curvg : Rt — S,
with arbitraryy(0) € S, that satisfies;y(t) = X (y(r)) automatically fulfills(59)—(61) This
proves the assertion. O
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5.1.2. Equilibria
The constrained Hamiltonian mechanical systgmg, U, W) possesses

Co = (g € Qlph(@d,U) = 0} (62)

as its critical set. An application of Sard’s theorem fully analogous to the proof of
Theorem 3.3shows that generically, this is a piecewise smooths (k)-dimensional sub-
manifold of Q (recall that the rank obw (g) is k).

5.1.3. Symmetries

Let G be a Lie group, and lefr : G — Diff (Q), h — ¥, with ¥, = id, denote a group
action. The constrained Hamiltonian mechanical syst@ng, U, W) is said to exhibit a
G-symmetry if the following hold. (1) Invariance of the Riemannian metricsy, = g
andg* o Y, = g* forall h € G. (2) Invariance of the potential enerdy:o v, = U for all
h € G. (3) Invariance of the distributiong,. W = W andy; W* = W*forall h € G.

5.2. Construction of the auxiliary extension

We are now prepared to embed the non-holonomic mechanical system into a constrained
Hamiltonian system of the type discussed in the previous sections.

To this end, we will introduce a set of generalized Dirac constraints over the symplectic
manifold(T* Q, wg) inthe way presented fBection 1 They define a symplectic distribution
V, in a manner that the constrained Hamiltonian syst&Q, wo, H, V), with H given
by (54), contains the constrained mechanical system as a dynamical subsystem. Thus, the
auxiliary constrained Hamiltonian systeffi* Q, wo, H, V) extends the mechanical system
in the sense announced®®ction 1 An early inspiration for this construction stems from
Sofer et al[32]. We require the following properties to be satisfied(BY O, wo, H, V):

() Sis an invariant manifold under the flod; generated by6).

(i) All orbits @(x) with initial conditionsx € S satisfy the Euler—Lagrange equations of
the Holder principle.

(iii) Sis marginally stable unde#;.

(iv) The critical se®® of @, is a vector bundle ovet, hence equilibria of the constrained
mechanical system are obtained from equilibria of the extension by base point projec-
tion.

(v) Symmetries of the constrained mechanical system extend to thdse of

Let us briefly comment on (iii)—(v). (iii) is of importance for numerical simulations of
the mechanical system. (iv) makes it easy to extract information about the behavior of the
mechanical system from solutions of the auxiliary system. Condition (v) allows to apply
reduction theory to the auxiliary system, in order to reduce the constrained mechanical
system by a group action, if present. The choicéfds by no means unique, and depending
on the specific problem at hand, other conditions than (iii)—(v) might be more useful.

5.2.1. Construction oV
Guided by the above requirements, we shall now cons¥uct
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To this end, we pick a smootg?-orthonormal family of 1—form$§1}’};’{ with

¢r = ¢ik(q) dg*,

so that locally,

({e1s s Lui)) = (WHE

The defining relationshiﬁ&(q)p = 0 for Sis equivalent to the condition

f1(q, p):=gy(p.¢1(g)) =0 VI=1... n—k (63)

Itis clear thatf; € C*(T* Q).

@)

)

®3)

To satisfy conditions (i) and (iii), we require that the level surfaces
My =1{(q, plfig.p) =pnr; 1=1,....n—k} (64)

with = (11, ..., Ha—k), Ar€ integral manifolds dfgeqv). Here, degV) denotes the
degree of non-holonomy df, and evidently Mg = S.
Condition (jii) is satisfied because

L(g.p) ==Y _|fi(q. )
1

is an integral of motion for orbits ab,. SinceL grows monotonically with increasing
||, and attains its (degenerate) minimum of value zer&,dhis a Lyapunov function
for S. Anything better than marginal stability is prohibited by energy conservation.
To satisfy condition (ii), we demand thaiy ()¢ = 0, or equivalently, that

(@ =0 Vi=1...n—k (65)

shall be satisfied along all orbitg(z), p(r)) of (6), owing to(59).

If the constrained mechanical system exhibi-aymmetry, characterized by a group
actiony : G — Diff (Q) so thaty,, W = W Vh € G, the local family of 1-formd¢;}
can be picked in a manner thaf s, = ¢; is satisfied for alk € G in a vicinity of the
unit elemente. Consequently, the functiong (¢, p) = h; (¢, p) and their level sets
M, are invariant under the group action.

The condition tha{64) are integral manifolds oVgeqv) O V implies that all sections
of V are annihilated by the 1-formsfd for I = 1, ..., n — k. Furthermore, the condition
(65) requiresV to be annihilated by the 1-forms

£ :=ir(q)dg"+ ) 0dp, (66)

that are obtained from lifting; to 7*(T*Q),with I =1,...,n — k.

Proposition 5.1. The distribution

Vi= (ﬂ ker df,) N (ﬁ kerg,) C I(T*Q)
1 1

is symplectic
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Proof. V is symplectic iff its symplectic complement! is. With the given data, the
latter condition is more convenient to chedk’ is locally spanned by the vector fields
(Y1, ..., Y2) obtained from

wo(Yr, ) =&1(), oYk, -) = dfi(), (67)
wherel =1, ..., k, andwo = —dp; A dg'.
v+ is symplectic if and only ifD := [w(Y;, Y;)] has values itGLg (2(n — k)).
We remark that in the present notation, capital indices range fromkliftthey label

1-forms, and from 1 to Rif they label vector fields.
In local bundle coordinates,

dfr = 0y f)(q. p) dg' + i (@)g" () dp;.

wheregjj are the components of the metric tengan Q, as before. Let us introduce the
functions E(q) = [&i(g)] and F(q, p) = [9,) fk (g, p)], both with values in Mat(n x
(n — k)), which we use to assemble

K = Ft ETg_l T*Q — Matg(2(n — k) x 2n).

Any component vector : 7*Q — R?" that locally represents an element/@V) satisfies
Kv = 0. The symplectic structurgg is locally represented by, defined in(7). One can
easily verify that the'th row vector of the matrix 7! is the component vector df;. In
conclusion, introducing the matrices

G(g) = ET(q)g_l(q)E(q),
S(q, p) = F1(q, p)g 2@ E@) — ET(@g @) Fq. p),
one immediately arrives at

_ t 0 G
D = KJK _(_G S). (68)

Since¢; has been picked gi-orthonormal family of 1-forms om, it is clear thatG (¢) =
1,_x. Thus,D is invertible. This proves that ' is symplectic. O

5.2.2. Construction of the projection tensors

Next, we determine the matrix of they-orthogonal projection tensary, which is as-
sociated toV, in the present bundle chart. Again, it is more convenient to carry out the
construction for its complement first.

Proposition 5.2. The matrix of thevp-orthogonal projection tensaty associated td/+
(considered as a tensor field that mapg(7* Q)) to itself with kernel V) is given by

g (bw O)
v = _
T p;

in the local bundle chartg, p). The matrixT’ = T(q, p) is defined in68).
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Proof. The proof ofLemma 2.1can be used for this proof. The inverse(68)is

D_]_ _ S —dn—k
1n—k 0 ’

where we recall thaG(q) = 1,_«. The Ith column vector of the matriX 7! is the
component vector of; (we have required thdtry, ..., Yog -k} spansV1). This implies

thatiy = JK T D1K.
Lemma5.1. The matrix ofpy in the given chart is given by

pw(q) = g N EQET(@. (69)

Proof. The construction presently carried out for can also be applied fow . One simply
replacesV by W', andwp by the Riemannian metrig on Q. An easy calculation im-
mediately produces the asserted formula. The matrpgofs subsequently obtained from

ow + pw = 1. For more details, cf11]. O
Introducing
T(q. p) = E@F (g, pow(@ — oy @ Fa. pE @, (70)

a straightforward calculation produces the asserted formulafor

Corollary 5.1. In the given bundle coordinatgthe matrix ofry is

Ty = + ).

whereT = T(g, p) is defined in(70).

Proof. This is obtained fromry + 7y = 1p,. O

In this chartry (x)J = jn‘-l;(x), by wo-skew orthogonality ofry .

Theorem 5.3. Let H be as in54). Then the dynamical system locally represented by

: 0
<q> _ pw (aqH>’ 1)
P ot 1) \o,H

corresponding to the constrained Hamiltonian systdmQ, wo, H, V), is an extension of
the constrained mechanical systém, g, U, W).

Proof. By constructions is an invariant manifold of the associated flaw, hence(61)is
fulfilled for all orbits of (71) with initial conditions inS.
The equatiory = pwd, H in (71) obviously is(59).
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Next, using the notationf := (f1, ..., fn,k)T,

f=ETgp,
and substituting70) for T(g, p), the equation fop in (71) becomes

p=—pyagH —EFTG+plFr.

SinceM,, are invariant manifolds of the flo; generated by71), 8, f1(q(¢), p(r)) vanishes
along all orbits of(71), so thatFTc'] + ETg‘lp = 0. This implies that

p=—p o H+EE g+ pha, 1T p. (72)
Recalling thafoy = g—lEEJr from (69), and using the fact thgf = 0 on S, one arrives at
(60) by multiplication withpa, from the left. O

5.2.3. Equilibria of the extension
The critical set of the extension constructed above is characterized by the following
theorem.

Theorem 5.4. The critical set o{71) is given by the vector bundle

¢=J g x wpt

quQ
with base space, cf. (62).

Proof. Letusfirstconside72). As has been stated above, the second term on its right-hand
side is equal tgy, (¢) p, and moreover, froni63), one concludes that

Tr=1alp2.
The Hamiltonian54) can be decomposed into

H(g. p) = H(q. o p) + L1510 pI2.,

due to theg*-orthogonality Ofp-";, andﬁ;rv, so that(72) can be written as

b= Py, Hig. plyp) + Py
The equilibria of(71) are therefore determined by the conditions
P @p=0.  oy(@dH@. pyp) =0,

BecauseH depends quadratically QKF}TVp, the second condition can be reduced to

P (@3,U(q) = 0
using the first condition. Comparing this wi¢é2), the assertion follows. O
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In particular, this fact implies that every equilibriugg, po) of the extension defines a
unique equilibriumyo on € by base point projection.

To analyze the stability of a given equilibrium solutigp € €y, it is necessary to
determine the spectrum of the Iinearizationxﬁ ata = (qo, 0).

A straightforward calculation along the lines of the previous discussion shows that in the
present bundle chart,

St
0 owg 1o
DX = | ) @), (73)
—pyD2,Upw — R 0
where
[Rik] := [0,:UCow);(pw); 0 (ow)}] € Matr(n x n). (74)

FurthermoreDSOU is the matrix of second derivatives &f The stability discussion in the
previous section can now straightforwardly be applieﬂ)l(X,(a).

5.2.4. Extension of symmetries

Letus assume thatthe constrained mechanical sygtem U, W) exhibits aG-symmetry
¥ G — Diff (Q). Then, we claim that it is extended bY* Q, wo, H, V). To this end, we
recall that the 1-formg; satisfyy;¢; for all 2 € G close to the unit.

Via its pullback,yr induces the group action

U=y* . GxT"Q— T*Q

on7*Q. This group action is symplectic, that i8;wo = wo for all € G. For a proof,
consider for instancf].

The 1-formst;, defined in(66), satisfyw; ¢, = &/, and likewise f; o ¥, = f} is satisfied
for all & € G close to the unit. The definition f in Proposition 5.1hus implies that

UV =V

is satisfied for alh € G. Due to the fact thab andV are bothG-invariant,7y andzy are
also invariant under th@-actionv.

The HamiltonianH in (54) is G-invariant undenw, by assumption on the constrained
Hamiltonian mechanical system. Thusy fulfills ¥,. Xy = Xy for all h € G, which
implies thatX}, = =y (X p) is G-invariant.

5.3. The topology of the critical manifold

Since¢ is not a compact submanifold @™ Q, our previous results cannot be applied
directly. However, owing to the vector bundle structur&and7* Q, the result

> oartiidim HP(€) = Y AP dim HY (T*Q) + (1+ 1) Q%) (75)
iL,p p

still holds, whereH denotes the de Rham cohomology based on differential forms with
compact supports. The polynomidlz) has non-negative integer coefficients.
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In a first step, the arguments $&ction 3can be straightforwardly applied &y. € is
normal hyperbolic with respect to the gradient-like flgywgenerated by

3q(1) = —pw(q(1)VeU(q(0),

it contains all critical points of the Morse functidi, but no other conditional extrema

of Ule, apart from those (it is gradient-like because along all of its non-constant orbits,
(d/dyU(1) = —g(pwVeU, pwV,U)l¢ < 0 holds, sincepy is an orthogonal projection
tensor with respect to the Riemannian megrion Q). This can be proved by substituting

M — Q,H— U,y — pw, §Kahley — &, and€ — €4 in Section 3and by applying

the arguments used there. Hence, letfingenote the index of the connectivity component
Cqi of €p, (19) implies that for compact, closed,

> artridim HP (€qi) = Y AP dim HP(Q) + (1+ 1) Q). (76)
i,p p

whereQ(?) is a polynomial with non-negative integer coefficients.

¢y, being the zero section &, is a deformation retract of, and likewise,Q is a
deformation retract of * Q. Thus,(75)follows trivially from the invariance of the de Rham
cohomology groups under retractiol? (¢;) = H?(Cqi), HP(T*Q) = HP(Q). Hence,
(75)is equivalent to

D APt (Eqi) = Y APhy(Q) + (L+1)QM), (77)
iLp r

whereb,, is the pth Betti number.
Consequently, one finds; b, ., (€qi) > b,, and in particular, fok = —1, one obtains

D (=DPHib, () = ) (=DM x(€q) = x(Q),

ip i

wherey denotes the Euler characteristic.

6. Applications, illustrations and examples

Let us conclude our analysis with the discussion of some simple applications and exam-
ples.

6.1. A computational application

Let us first formulate an application of our analysis for the computational problem of
finding the equilibria in a large constrained multibody system. It is in this context also desir-
able to determine whether a given set of parameters and constraints implies the existence of
non-generic critical points. This is due to the circumstance that in practice, manufacturing
imprecisions can have a significant effect on the latter.

For large multibody systems, equilibria can realistically only be determined by numerical
routines. The strategy presentedSeactions 2 and duggests the following method.



458 T. Chen/Journal of Geometry and Physics 49 (2004) 418-462

If U is a Morse function whose critical points are known, and is compact and closed,
it is possible to numerically construct all generic connectivity componentsofThis is
because generic componentsdyf are smooth,{ — k)-dimensional submanifolds ap
containing all critical points o/, and no other critical points d@f|¢ , . This information can
be exploited to find sufficiently many points @y, so that a suitable interpolation routine
enables the approximate reconstruction of an entire connectivity component. To this end,
one chooses a vicinity of a critical poiatof U, and uses a fixed point solver to determine
neighboring zeros qﬁow(q)VgU(q)F, which are elements @ close toa. lterating this
procedure with the critical points found in this manner, piecegbf arbitrary size can
be determined.

If all critical points of U are a priori known, one can proceed in this manner to construct
all connectivity components dfy that contain critical points df. Then, one is guaranteed
to have found all of the generic componentgafthe numerically determined connectivity
components are closed, compact, and contain all critical poirits of

We remark that determining the critical points of a Morse function: 9 — R
is a difficult numerical task by itself. Attempting to find critical points by simulating
the gradient flow generated byV,U is time costly, because the critical points define
a thin set in M. Their existence, however, is of course ensured by the topology
of Q.

Another remark is that all critical pointsat which D(pw V,U)(a) has a reduced rank,
are elements of the non-generic partf. Thus, the latter condition is an indicator for
non-genericity. If there are such exceptional critical points in a technically relevant region
of Q, they can be removed by a small local modification of the system parameters or
constraints.

6.2. Adisc in a periodic potential, sliding on the plane

Let us consider a mechanical example, consisting of a thin disc of radimass: on
the planéR?, which is attached to a massless skate. The connecting line between the center
of the disc and the contact point at the center of the skate with the plane is normal to the
plane, precisely if the disc is horizontal. We assume that the disc remains horizontal during
its motion, and that the translational motion of the disc is only possible in the direction of
the skate.

Let (x1, x2) denote the position of the center of mass of the disc with respect to some
Euclidean coordinate system &%, and lety denote the angle enclosed by the skate and
thexj-axis.

The kinetic energy of this system is given by

T = Im(d +i%) + 3(3(MA)¢?),
which defines a Riemannian metric ®Q with metric tensor
m 0 0
[gij(9. 0. ]=]1 0 m O

1,2
Oozmr
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Furthermore, we assume that it moves against the backgrourigiafac-periodic potential
energy

Ulx, x2,9) = Y ci(1— cosx;) + cp(1— cOSP),
i=12

wherecy, c2, andcy are coupling constants.

Dividing out the translational symmetry with respec(®xZ)3, the configuration man-
ifold of this mechanical system is given lgy = [0, 27]® = T3 (periodic boundary condi-
tions). Clearly,U : T3 — R is a real analytic Morse function, with eight critical points in
the corners of [0r]3, while each of the remaining critical points in, [Bz]3 is identified
with one of the former by periodicity. Correspondingly, we will from here on consider
(x1, x2) as coordinates ofi, that is, mod 2.

The requirement that the disc shall slide in the direction of the skate is expressed by the
non-holonomic constraint

X1SiNn¢g — k2 cosg = 0.
The matrixET(xl, x2, ¢), introduced in the proof ofheorem 5.1thus corresponds to
ET(x1, x2, ) = (sing, — cosg, 0),

sothatETg=1E = 1/m.
The orthoprojectorgy andpy are thus straightforwardly obtained as

sinZ¢ —singcosp 0O
pw(x1, x2, ) = | —sing cosg cos2¢ 0],
0 0 0

cos?¢p  singcosp O
ow(x1, x2,¢) = | sinpcosp  sin%p 0O

0 0 1

The critical set is given by

€0 = ((x1. x2. Dl (o VU) (1. X2 ¢) = O}
(whereV := (3y,, 0x,, 94)). Let

Cop i= {(x1, x2, P)|x1 = a, x2 € [0, 27], ¢ = b}.

Then,

= |J cu.

a,be{0,r}
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Itis trivially clear that® o contains all critical points df. Letg. € &, 5, wherea, b € {0, }.
Noting thatpw = diag(1, 0, 1) on €y, we have
(V ® (ol VUN(Ge) = (o (¥ ® VU)pw) (ge) + Rge)
c1cosa 0 cpsinxg
— 0 0 0 : (78)
0 0 cpcOSb

Clearly,

SPEE(V @ (o, VU))(g) = (0, c1.C0Sa, ¢ COSh),
which is, for each fixed:, b, independent of,. Thus, the indices of the connectivity
component¥, , with respect to the gradient-like flow generated—ngVVU are given by
n(€o0) =2, n(€.x) = n(€ro) =1, p(&r7) =0, (79)

and clearly,¢,, = S* for all a, b € {0, 7}. Since the Betti numbers df® are given by
bo = b3 = 1, b1 = by = 3, and those o€, , by bo(€,p) = b1(Cap) = 1, b2(Chp) =
b3(€,.p) = 0, one finds that

pr—u(ﬁa,b)(cmb) =bp(Q)
a,b

forp=0,...,3, orexplicitly,

b3 2(C00) = 1 =b3(T3), br_2(€0,0) + b2_1(Cox) + b2-1(Cr0) = 3= ba(T>),
b1-0(Crx) + b1-1(Co.x) + b1-1(€r0) = 3=b1(T3), bo_o(Crr) = 1= bo(T>),
in agreement witt{77).

Next, we determine the spectrum of the IinearizatiorX@f at(g.,0) € T*Q, cf. (73).
To this end,

1
— 0 0
m
(oweg towehHh@ =10 o o |.
2
0 il
mr2

and multiplying this matrix from the right wit(i78) yields

c1C0Sa 0 ¢ Sinx2
m
2(qc, 0) = 0 0 0
2c, COSb
o o =

mr2
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Clearly,

m mr2

c1€0Sa 2cy4 COSh
SPGQQ(QC,G))Z{O, tha }

From(73), it is easy to see that

cosa 2c4 COSb
DX (g, 0) = {0, +, /220 4 [0 :
spee¢DX} (qc, 0) [ - )

hence critical stability occurs for the cage= b = =, while in all other cases, there is an
asymptotically unstable direction.

We conclude that all componends 5, wherea + b < 7, are unstable. In the critically
stable case = b = =, the linear problem is oscillatory, and the eigenfrequencies are

given by./c1/m and,/2c,/mr?, independent of,. Sincen (¢, ») = 0, our discussion in
Section 4suggests that the connectivity componént, of €y is stable in the sense of

Nekhoroshev if the ratig/ clmr2/2c¢ is irrational.

Acknowledgements

This work is based on the thegis4], which was carried out at the center of mechanics
(IMES), ETH Zirich. | warmly thank Prof. H. Brauchli for suggesting this area of problems,
for his insights, and for the possibility to carry out this work. | am profoundly grateful
to Prof. E. Zehnder for his generosity, and discussions that were most enlightening and
helpful. It is a pleasure to thank M. von Wattenwyl, M. Sofer, H. Yoshimura, O. O'Reilly,
and especially M. Clerici, for highly interesting discussions. | also thank the referee for his
helpful suggestions. The author is supported by a Courant Instructorship.

References

[1] R. Abraham, J.E. Marsden, Foundations of Mechanics, Benjamin/Cummings, Menlo Park, CA, 1978.
[2] V.I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, vol. 60, 2nd
ed., Springer, Berlin, 1989.
[3] V.I. Arnold, Dynamical Systems, Ill, Encyclopedia of Mathematics, vol. 3, Springer, Berlin, 1988.
[4] D.M. Austin, P.J. Braam, Morse—Bott theory and equivariant cohnomology, in: H. Hofer, C.H. Taubes, A.
Weinstein, E. Zehnder (Eds.), The Floer Memorial Volume, Birkhauser, Basel, 1995.
[5] A. Bellaiche, J.-J. Risler (Eds.), Sub-Riemannian Geometry, Birkhduser, Basel, 1996.
[6] J.-M. Bismut, The Witten complex and the degenerate Morse inequalities, J. Diff. Geom. 23 (1986) 207—240.
[7] A.M. Bloch, P.S. Krisnaprasad, J.E. Marsden, R.M. Murray, Non-holonomic mechanical systems with
symmetry, Arch. Rat. Mech. Anal. 136 (1996) 21-99.
[8] R. Bott, Nondegenerate critical manifolds, Ann. Math. 60 (2) (1954) 248-261.
[9] R. Bott, Morse theory indomitable, Publ. Math. 68 (1989) 99-114.
[10] R. Bott, Lectures on characteristic classes and foliations, in: R. Bott, S. Gitler, I.M. James (Eds.), Lectures
on Algebraic Topology, Lecture Notes in Mathematics, vol. 279, Springer, Berlin, 1972.
[11] H. Brauchli, Mass-orthogonal formulation of equations of motion for multibody systems, J. Appl. Math.
Phys. (ZAMP) 42 (1991) 169-182.



462 T. Chen/Journal of Geometry and Physics 49 (2004) 418-462

[12] H. Brauchli, Efficient description and geometrical interpretation of the dynamics of constrained systems, in:
J. Angeles, E. Zakhariev (Eds.), Computational Methods in Mechanical Systems’97, Springer, Berlin, 1998.

[13] F. Cardin, M. Favretti, On non-holonomic and vakonomic dynamics of mechanical systems with nonintegrable
constraints, J. Geom. Phys. 18 (1996) 295-325.

[14] T. Chen, Non-holonomy, critical manifolds and stability in constrained Hamiltonian systems, ETH-
Dissertation No. 13017, 1999.

[15] C. Conley, E. Zehnder, Morse type index theory for flows and periodic solutions of Hamiltonian equations,
Commun. Pure Appl. Math. 37 (1984) 207-253.

[16] B.A. Dubrovin, A.T. Fomenko, S.P. Novikov, Modern Geometry—Methods and Applications, vol. lIl,
Springer, Berlin, 1985.

[17] A. Floer, Witten’s complex and infinite dimensional Morse theory, J. Diff. Geom. 30 (1989) 207-221.

[18] Z. Ge, Betti numbers, characteristic classes and sub-Riemannian geometry, lllinois J. Math. 36 (3) (1992)
372-403.

[19] M. Gromov, Carnot—Caratheodory spaces seen from within, in: A. Bellaiche, J.-J. Risler (Eds.), Sub-
Riemannian Geometry, Birkhduser, Basel, 1996.

[20] M.W. Hirsch, Differential Topology, Springer, New York, 1976.

[21] H. Hofer, E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkh&user, Basel, 1994.

[22] J. Jost, Riemannian Geometry and Geometric Analysis, Springer, Berlin, 1995.

[23] W.S. Koon, J.E. Marsden, The Hamiltonian and Lagrangian approaches to the dynamics of non-holonomic
systems, Rep. Math. Phys. 40 (1997) 21-62.

[24] W.S. Koon, J.E. Marsden, The Poisson reduction of nonholonomic mechanical systems, Rep. Math. Phys.
42 (1998) 101-134.

[25] J.E. Marsden, T. Ratiu, Introduction to Mechanics and Symmetry, Springer, New York, 1994.

[26] D. McDuff, D. Salamon, Introduction to Symplectic Topology, Clarendon Press, Oxford, 1995.

[27] J. Milnor, Morse Theory, Princeton University Press, Princeton, NJ, 1963.

[28] J. Milnor, Topology from the differentiable viewpoint, in: Princeton Landmarks in Mathematics, Princeton

University Press, Princeton, NJ, 1997.

M. Schwarz, Morse Homology, Birkhauser, Basel, 1993.

S. Smale, Morse inequalities for a dynamical system, Bull. Am. Math. Soc. 66 (1960) 43—49.

S. Smale, On gradient dynamical systems, Ann. Math. 74 (1) (1961) 199-206.

M. Sofer, O. Melliger, H. Brauchli, Numerical behaviour of different formulations for multibody dynamics,

in: Ch. Hirsch, et al. (Eds.), Numerical Methods in Engineering’92, Elsevier, Amsterdam, 1992.

[33] E. Spanier, Algebraic Topology, Springer, New York, 1966.

[34] R. Strichartz, Sub-Riemannian geometry, J. Diff. Geom. 24 (1986) 221-261.

[35] J. Van der Schaft, B.M. Maschke, On the Hamiltonian formulation of non-holonomic mechanical systems,
Rep. Math. Phys. 34 (1994) 225-233.

[36] E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. 17 (1982) 661-692.

[37] R.W. Weber, Hamiltonian systems with constraints and their meaning in mechanics, Arch. Rat. Mech. Anal.
91 (1986) 309-335.

[38] H. Yoshimura, T. Kawase, A duality principle in non-holonomic mechanical systems, Nonconvex Opt. Appl.
50 (2001) 447-471.

[39] E. Zehnder, The Arnold conjecture for fixed points of symplectic mappings and periodic solutions of
Hamiltonian systems, in: Proceedings of the International Congress of Mathematicians, Berkeley, CA, 1986.

[40] D.V. Zenkov, A.M. Bloch, J.E. Marsden, The energy—momentum method for the stability of non-holonomic
systems, Dyn. Stab. Syst. 13 (1998) 123-166.

[29
[30
131
[32



	Critical manifolds and stability in Hamiltonian systems with non-holonomic constraints
	Introduction
	A non-integrable generalization of Dirac constraints
	Non-integrable constraints
	An auxiliary almost Kahler structure
	Further properties
	Symmetries
	Generalized Dirac bracket
	Energy conservation
	Symplecticness


	The geometry and topology of the critical manifold
	Generic properties of the critical set
	Normal hyperbolicity and an auxiliary gradient-like system
	A generalized Hessian
	Definition of the gradient-like system
	Morse functions and non-degenerate critical manifolds

	Approach via Conley-Zehnder theory
	Approach via the Morse-Witten complex
	Comparing the complexes for the free and constrained system
	Proof of (25)


	Qualitative aspects related to critical stability
	Stability criteria
	Asymptotic (in)stability
	An elementary application of averaging theory

	The relationship to sub-Riemannian geometry
	Dynamics along the flag of V
	Non-holonomy and small divisors
	Rational frequency dependence and blow-up of solutions
	Instabilities in the context of Carnot-Caratheodory geometry


	Autonomous non-holonomic systems in classical mechanics
	Linear non-holonomic constraints
	Dynamics of the constrained mechanical system
	Equilibria
	Symmetries

	Construction of the auxiliary extension
	Construction of V
	Construction of the projection tensors
	Equilibria of the extension
	Extension of symmetries

	The topology of the critical manifold

	Applications, illustrations and examples
	A computational application
	A disc in a periodic potential, sliding on the plane

	Acknowledgements
	References


