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Abstract

We explore a particular approach to the analysis of dynamical and geometrical properties of au-
tonomous, Pfaffian non-holonomic systems in classical mechanics. The method is based on the con-
struction of a certain auxiliary constrained Hamiltonian system, which comprises the non-holonomic
mechanical system as a dynamical subsystem on an invariant manifold. The embedding system pos-
sesses a completely natural structure in the context of symplectic geometry, and using it in order
to understand properties of the subsystem has compelling advantages. We discuss generic geomet-
ric and topological properties of the critical sets of both embedding and physical system, using
Conley–Zehnder theory, and by relating the Morse–Witten complexes of the ‘free’ and constrained
system to one another. Furthermore, we give a qualitative discussion of the stability of motion in the
vicinity of the critical set. We point out key relations to sub-Riemannian geometry, and a potential
computational application.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

We introduce and explore a particular approach to the analysis of autonomous,
Pfaffian non-holonomic systems in classical mechanics, which renders them naturally
accessible to the methods of symplectic and sub-Riemannian geometry. We note that
typical examples of systems encountered in sub-Riemannian geometry emerge from
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optimal control, or ‘vakonomic’ problems, which are derived from a different variational
principle (minimization of the Carnot–Caratheodory distance) than the Euler–
Lagrange equations of classical mechanical systems with non-holonomic constraints (the
Hölder variational principle, cf.[3], andSection 4in this paper). The strategy is based
on the introduction of an artificial Hamiltonian system with constraints that are compat-
ible with the symplectic structure, constructed in a manner that it comprises the non-
holonomic mechanical system as a dynamical subsystem on an invariant manifold. The
main focus of the discussion in this paper aims at the geometrical and topological
properties of the critical sets of both embedding and mechanical system, on the
stability of equilibria, and an application of the given analysis to a computational
problem.

There exists a multitude of different approaches to the description and analysis of non-
holonomic systems in classical mechanics, stemming from various subareas of application.
The geometrical approach given here has been strongly influenced by Weber[37] and
Brauchli et al.[11,12,32]. A construction for the Lagrangian case, which is closely related
to what will be presented inSection 4, has been given in[13]. A different approach in the
Hamiltonian picture is dealt with in[35]. A geometrical theory of non-holonomic systems
with a strong influence of network theory has been developed in[38]. The geometrical
structure of non-holonomic systems with symmetries and the associated reduction theory,
as well as aspects of their stability theory has been at the focus in the important works
[7,23,24,40], and other papers by the same authors.

This paper is structured as follows. InSection 2, we introduce a class of Hamilto-
nian systems with non-integrable constraints. Given a symplectic manifold(M,ω) and
a non-integrable, symplectic distributionV , we focus on the flow̃Φt generated by the com-
ponentXV

H of the Hamiltonian vector fieldXH inV . In Section 3, we study the geometry and
topology of the critical setC of the constrained Hamiltonian system. The main technical tool
used for this purpose is a gradient-like flowφt , whose critical setC is identical to that of̃Φt .
Assuming that the HamiltonianH : M → R is a Morse function, it is proved that generi-
cally,C is a normal hyperbolic submanifold ofM. Using Conley–Zehnder theory, we prove a
topological formula for closed, compactC, that is closely related to the Morse–Bott inequal-
ities. A second, alternative proof is given, based on the use of the Morse–Witten complex,
to elucidate relations between the ‘free’ and the constrained system. InSection 4, we give
a qualitative, partly non-rigorous discussion of the stability of the constrained Hamiltonian
system, and conjecture a stability criterion for the critically stable case. A proof of the as-
serted criterion, which would involve methods of KAM and Nekhoroshev theory, is beyond
the scope of the present work. We derive an expression for orbits in the vicinity of a critically
stable equilibrium that is adapted to the flag ofV , and point out relations to sub-Riemannian
geometry.

In Section 5, we consider Hamiltonian mechanical systems with Pfaffian cons-
traints. We show that for any such system, there exists an auxiliary constrained Hamil-
tonian system of the type introduced inSection 2. We study the global topology
of the critical manifold of the constrained mechanical system, and again discuss
the stability of equilibria. Finally, we propose a computational application, a method to
numerically determine the generic connectivity components of the critical
manifold.
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2. A non-integrable generalization of Dirac constraints

Let (M,ω,H) be a Hamiltonian system, whereM is a smooth, symplectic 2n-manifold
with C∞ symplectic structureω ∈ Λ2(M), and whereH ∈ C∞(M) is the Hamilton
function. Forp = 1, . . . ,2n, Λp(M) denotes theC∞(M)-module ofp-forms onM. The
Hamiltonian vector fieldXH ∈ Γ(TM) is determined by

iXHω = −dH,

wherei stands for interior multiplication. Given a smooth distributionW ⊂ TM, Γ(W)
will denotes theC∞(M)-module of smooth sections ofW . The Hamiltonian flow is the
1-parameter groupΦt ∈ Diff (M) generated byXH , with t ∈ R, andΦ0 = id. Its orbits are
solutions of

∂tΦt(x) = XH(Φt(x)) (1)

for x ∈ M, andt ∈ R.
Let us first recall some standard facts about Dirac constraints that will be useful in the

subsequent construction. Let, forf, g ∈ C∞,

{f, g} = ω(Xf ,Xg) (2)

denote the smooth, non-degenerate Poisson structure onM induced byω. It is a derivative
in both of its arguments, and satisfies the Jacobi identity{f, {g, h}} + (cyclic) = 0, thus
(C∞(M), {·, ·}) is a Lie algebra. Then,(1) translates into

∂tf(Φt(x)) = {H, f }(Φt(x)) (3)

for all f ∈ C∞(M), and allx ∈ M, t ∈ R.
Let j : M ′ ↪→ M be an embedded, smooth, 2k-dimensional symplectic submanifold of

M, endowed with the pullback symplectic structurej∗ω. The Dirac bracket corresponds to
the induced Poisson bracket onM ′,

{f, g}D = (j∗ω)(X
f̃
,Xg̃),

defined for any pair of extensions̃f , g̃ ∈ C∞(M) of f, g ∈ C∞(M ′). If M ′ is locally
characterized as the locus of common zeros of some family of functionsGi ∈ C∞(M),
i = 1, . . . ,2(n − k), the following explicit construction of the Dirac bracket can be given
[25]. SinceM ′ ⊂ M is symplectic, the(n− k)2 functions locally given byDij := {Gi,Gj}
can be patched together to define a matrix-valuedC∞ function that is invertible everywhere
onM ′. The explicit formula for the Dirac bracket is locally given by

{f, g}D = {f̃ , g̃} − {f̃ , Gi}Dij {Gj, g̃}, (4)

whereDij denotes the components of the inverse of [Dij ].
This construction can be put into the following more general context.

Definition 2.1. A distributionV over the base manifoldM is symplectic ifVx is a symplectic
subspace ofTxM with respect toωx, for all x ∈ M. Its symplectic complementV⊥ is the
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distribution which is fibrewiseω-skew orthogonal toV . Furthermore, an embeddingI ⊂
R ↪→ M that is tangent toV is calledV -horizontal.

Clearly,V⊥ is by itself symplectic, and smoothness ofV andω implies smoothness of
V⊥. Furthermore, the Whitney sum bundleV ⊕V⊥ is TM. Thus, letV denote an integrable,
smooth, symplectic rank 2k-distributionV overM. Clearly, any sectionX ∈ Γ(TM) has a
decomposition

X = XV +XV⊥ ,

whereXV(⊥) ∈ Γ(V (⊥)), so thatω(XV ,XV⊥) = 0. Furthermore, there exists anω-skew
orthogonal tensorπV : TM→ TM with

Ker(πV ) = V⊥, πV (X) = X ∀X ∈ Γ(V),
which satisfies

ω(πV (X), Y) = ω(X, πV (Y)) (5)

for all X, Y ∈ Γ(TM). It will be referred to as theω-skew orthogonal projection tensor
associated toV . LetY1, . . . , Y2k denote a local spanning family of vector fields forV . Then,
V being symplectic is equivalent to the matrix [Cij ] := [ω(Yi, Yj)] being invertible.

Lemma 2.1. Let [Ckl] denote the inverse of[Cij ], and letθj := iYjω ∈ Λ1(TM). Then,
locally, πV = CijYi ⊗ θj.

Proof. The fact thatCijYi⊗ θj is a projector, and that(5) holds, follows fromθi(Yj) = Cij ,
andCijC

jk = δli. Its rank is clearly 2k, and it is straightforward to see that its kernel is given
by Γ(V⊥). �

2.1. Non-integrable constraints

The quadruple(M,ω,H, V) naturally define a dynamical system whose orbits are all
V -horizontal. Its flow is simply the 1-parameter group of diffeomorphismsΦ̃t generated by
XV
H := πV (XH) ∈ Γ(V), with

∂tΦ̃t(x) = XV
H(Φ̃t(x)) (6)

for everyx ∈ M. In a local Darboux chart, whereω is represented by

J =
(

0 1n

−1n 0

)
, (7)

and wherex(t) stands for the vector of coordinate components ofΦ̃t(a), (6) is given by

∂tx(t) = (PxJ∂xH)(x(t)) = (JP†
x ∂xH)(x(t)). (8)

P denotes the matrix ofπV , andP† is its transpose.
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If the condition of integrability imposed onV is dropped, this dynamical system will
allow for the description of non-holonomic mechanics. IfV is integrable,M is foliated into
2k-dimensional symplectic integral manifolds ofV . On every leafj : M ′ → M, the induced
dynamical system corresponds to the pullback Hamiltonian system(M, j∗ω,H ◦ j) [10].
In this sense,(6) generalizes the Dirac constraints.

A new class of dynamical systems is obtained by discarding the requirement of integrabil-
ity onV . Let [·, ·] denote the Lie bracket. We recall that the distributionV is non-integrable
if there exists a filtration

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vr, (9)

inductively defined byV0 = V , andVi = Vi−1+ [V0, Vi−1], whereV1 �= V0. The sequence
{Vi}r1 is called theflagof V . If the fiber ranks of allVi are base point independent,V is called
equiregular. The smallest number deg(V) at which the flag ofV stabilizes, that is, for which
Vs = Vdeg(V) ∀s ≥ deg(V), is called the degree of non-holonomy ofV . If Vdeg(V) = TM,
one says thatV satisfies Chow’s condition, or that it is totally non-holonomic.

Proposition 2.1 (Frobenius condition).V is integrable if and only if locally,

Λk
ij := (πV )

r
i (πV )

s
j(∂r(πV )

k
s − ∂s(πV )

k
r ) = 0 (10)

everywhere on M.

Proof. V is integrable if and only if̄πV ([πV (X), πV (Y)]) = 0 for all sectionsX, Y of TM,
which is equivalent toV1 = V . The asserted formula is the local coordinate representation
of this condition. �

2.2. An auxiliary almost Kähler structure

For the analysis in subsequent sections, it will be useful to introduce an almost Kähler
structure onM that is adapted toV . To this end, let us briefly recall some basic definitions.
Let g denote a Riemannian metric onM. An almost complex structureJ is a smooth
bundle isomorphismJ : TM→ TM with J2 = −1. Together withg, it defines a two-form
satisfying

ωg,J (X, Y) = g(JX, Y) (11)

for all sectionsX, Y ∈ Γ(TM). g is Hermitian ifg(JX, JY) = g(X, Y), and Kähler ifωg,J
is closed. The triple(g, J, ωg,J ) is called compatible. Every symplectic manifold admits an
almost complex structureJ , and a Kähler metricg, such that(g, J, ω) is compatible.

Proposition 2.2. For any symplectic manifold(M,ω), together with a symplectic distribu-
tion V, there exists a compatible triple(g, J, ω), such thatπV is symmetric with respect to
g, andπV JX= JπVX for all X ∈ Γ(TM).

Proof. We pick a smooth Riemannian metricg̃ onM, relative to whichπV is symmetric,
for instance by choosing an arbitrary Riemannian metricg′ onM, and defining̃g(X, Y) :=



T. Chen / Journal of Geometry and Physics 49 (2004) 418–462 423

g′(πVX, πVY) + g′(π̄VX, π̄V Y), whereπ̄V = 1 − πV . We consider the non-degenerate,
smooth bundle mapK defined byω(X, Y) = g̃(KX, Y), which is skew symmetric with
respect tog̃, that is, itsg̃-adjoint isK∗ = −K. K∗K = −K2 is smooth, positive defi-
nite, non-degenerate andg̃-symmetric, hence there is a unique smooth, positive definite,
g̃-symmetric bundle mapA defined byA2 = −K2, which commutes withK. Conse-
quently, the bundle mapJ = KA−1 satisfiesJ2 = −1, and defines an almost complex
structure. SinceA is positive definite and̃g-symmetric,g(X, Y) := g̃(AX, Y) is a Rieman-
nian metric withω(X, Y) = g(JX, Y). Moreover, this metric is Hermitian, sinceg(JX, JY) =
g̃(KX, A−1KY) = −g̃(X,K2A−1Y) = g̃(X,AY) = g(X, Y). In fact, sinceω is closed,g is
Kähler.

To show thatπV isg-symmetric, we note thatπV commutes withK, sinceg̃(KπVX, Y) =
ω(πVX, Y) = ω(X, πVY) = g̃(KX, πVY) = g̃(πVKX, Y) for all X, Y ∈ Γ(TM), using
that πV is symmetric with respect tõg. Hence,πV commutes withA2 = −K2, and it
straightforwardly follows from thẽg-orthogonality ofA, πV , and the positivity ofA that
πV andA commute. Hence,πV is g-symmetric, and it is also clear thatπV commutes with
J = KA−1. Thus,J in particular restricts to a bundle mapJ : V → V . �

2.3. Further properties

Some key properties of Hamiltonian systems concerning symmetries, Poisson brack-
ets, energy conservation, and, to some degree, symplecticness, can be generalized to the
constrained system.

2.3.1. Symmetries
Let us assume that the Hamiltonian system(M,ω,H) admits a symplecticG-action

(G some Lie group)Ψ : G → Diff (M), such thatΨ∗hω = ω andH ◦ Ψh = H for all
h ∈ G. Then, we will say that the constrained system(M,ω,H, V) admits aG-symmetry
if Ψh∗V = V holds for allh ∈ G.

2.3.2. Generalized Dirac bracket
The smooth,R-bilinear, antisymmetric pairing onC∞(M) associated to(M,ω, V) given

by

{f, g}V := ω(πV (Xf ), πV (Xg)) (12)

is a straightforward generalizes of the Dirac and Poisson brackets. Along orbits ofΦ̃t , one
has

∂tf(Φ̃t(x)) = {H, f }V (Φ̃t(x))

for all x ∈ M, in analogy to(3). However, the bracket(12) does not satisfy the Jacobi
identity if V is non-integrable, but it satisfies a Jacobi identity on every (symplectic) integral
manifold if V is integrable.

2.3.3. Energy conservation
This key conservation law also exists for the constrained system.
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Proposition 2.3. The energy H is an integral of motion of the dynamical system(6).

Proof. This follows from the antisymmetry of the generalized Dirac bracket, which implies
that∂tH = {H,H}V = 0. �

2.3.4. Symplecticness
The flowΦ̃t is not symplectic, but the following holds. Let us consider

∂tΦ̃
∗
t ω = Φ̃∗t LXV

H
ω = Φ̃∗t (diXV

H
ω + iXV

H
dω) = −Φ̃∗t d((πV )

i
k∂iH dxk)

= −Φ̃∗t (∂l(πV )ik∂iH dxl ∧ dxk)=−1
2Φ̃

∗
t ((∂l(πV )

i
k−∂k(πV )il)∂iH dxl ∧ dxk).

Hence, the restriction of∂tΦ̃∗t ω toX, Y ∈ Γ(V) is given by

∂tΦ̃
∗
t ω(X, Y) = −1

2Φ̃
∗
t (Λ

i
rs∂iHXrYs),

whereΛi
rs is defined inLemma 2.1. Thus, the right-hand side vanishes identically if and

only if V is integrable. In the latter case, the restriction ofΦ̃∗t ω to V × V equals its value
for t = 0, given byω(πV (·), πV (·)). On every integral manifoldj : M ′ → M of V , Φ̃t is
symplectic with respect to the pullback symplectic structurej∗ω.

3. The geometry and topology of the critical manifold

In this main section, we address geometrical and topological properties of the critical set
C of the constrained Hamiltonian system(M,ω,H, V). The main result of the subsequent
analysis is, forM compact and without boundary, the topological formula(18) that interre-
lates the Poincaré polynomials ofM andCgen in a manner closely akin to the Morse–Bott
inequalities. This result implies that the topology ofM necessitates the existence of certain
connectivity components ofCgenof a prescribed index. The analysis is structured as follows.

In Section 3.1, we prove thatC is, in the sense of Sard’s theorem, generically a smooth
2(n−k)-dimensional submanifoldCgen⊂ M. For the special case in whichV is integrable,
it is shown that the intersection of any integral manifold ofV with Cgen is a discrete set,
in agreement with the usual understanding that critical points in Hamiltonian systems—on
every leaf of the foliation in the integrable case—are typically isolated.

In Section 3.2, we introduce the main tool for the analysis ofC, an auxiliary gradient-like
flow φt ∈ Diff (M) generated by the vector fieldπV∇gH , whereg is the Kähler metric of
the compatible quadruple introduced afterProposition 2.2. From this point on, we assume
thatH : M → R is a Morse function. Letj : Cgen ↪→ M denote the embedding. We show
thatCgen is normal hyperbolic with respect toφt , and that the critical points ofj∗H onCgen
are precisely those ofH onM. The latter is quintessential for our discussion of the topology
of Cgen via comparison of the Morse–Witten complexes of(Cgen, j

∗H) and of(M,H) in
Section 3.4.

In Section 3.3, we prove(18) by an application of Conley–Zehnder theory[15] to the
auxiliary gradient-like system. The assumptions onC are slightly less strict than genericity.
In particular, assuming thatC \Cgen is a disjoint union ofC1 manifolds, we show that every
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connectivity component ofC \Cgen is contained in aH-level surface, and thatC \Cgencan
be deformed away by an infinitesimal perturbation of the vector field.

In Section 3.4, we assume thatC = Cgen, and give a second proof based on the compar-
ison of the Morse–Witten complexes of(M,H) and(Cgen, H |Cgen). Our construction only
uses the theory for non-degenerate Morse functions, not for Morse–Bott functions. The
interest in this discussion is to elucidate the relationship between critical points of the ‘free’
system(M,H), and of the critical manifoldCgen of the constrained system(M,H, V). The
special case of mechanical systems (whereM is non-compact) will be analyzed in a later
section.

3.1. Generic properties of the critical set

Let us to begin with recall some basic definitions. Critical points ofH are given by zeros
of dH , and a corresponding value ofH is called a critical value. A critical level surface
ΣE corresponds to a critical valueE of H , whereas a regular level surfaceΣE contains no
critical points ofH (the corresponding value ofE is then called regular). The critical set of
the constrained Hamiltonian system(M,ω,H, V) is given by

C = {x ∈ M|XV
H(x) = 0} ⊂ M.

The following theorem holds independent of the fact whetherV is integrable or not.

Theorem 3.1. In the generic case, the critical set is a piecewise smooth, 2(n − k)-
dimensional submanifold of M.

Proof. Let {Yi}2ki=1 denote a smooth, local family of spanning vector fields forV over an
open neighborhoodU ⊂ M. SinceV is symplectic, the fact thatXV

H is a section ofV
implies thatω(Yi,XV

H) cannot be identically zero for alli and everywhere inU. Due to the
ω-skew orthogonality ofπV , andπVYi = Yi,

ω(Yi,X
V
H) = ω(πV (Yi), XH) = ω(Yi,XH) = Yi(H).

Thus, withF := (Y1(H), . . . , Y2k(H)) ∈ C∞(U,R2k), it is clear thatC ∩ U = F−1(0).
SinceF is smooth, Sard’s theorem implies that regular values, having smooth, 2(n − k)-
dimensional submanifolds ofU as preimages, are dense inF(U) [28]. �

For future technical convenience, we pick a local spanning family{Yi ∈ Γ(V)}2ki=1 for V
that satisfies

ω(Yi, Yj) = J̃ij

with

J̃ :=
(

0 1k
−1k 0

)
.

This choice is always possible.
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Furthermore, introducing the associated family of 1-forms{θi} by θi(·) := ω(Yi, ·),
Lemma 2.1implies that

πV = J̃ ijYi ⊗ θj,

whereJ̃ ij are the components ofJ̃−1 = −J̃ . ExpandingXV
H with respect to the basis{Yi}

gives

XV
H = πV (X

V
H) = −Yi(H)J̃ ijYj, (13)

where one uses the relationshipθj(XV
H) = Yj(H) obtained in the proof ofTheorem 3.1.

Then, the following proposition holds, which is in the subsequent discussion interpreted as
the property of normal hyperbolicity ofC with respect to a certain gradient-like flow if the
genericity assumption is satisfied.

Proposition 3.1. Under the genericity assumption ofTheorem 3.1, the (2k × 2k)-matrix
given by[Yk(Yi(H))(a)] is invertible for alla ∈ C, and every local spanning family{Yi ∈
Γ(V)} of V.

Proof. Let us pick a local basis{Yi}2k1 for V , and{Zj}2(n−k)1 for V⊥, which together span
TM. Leta ∈ Cgen, and assume the generic situation ofTheorem 3.1. BecauseCgenis defined
as the set of zeros of the vector field(13), the kernel of the linear map

dFi(·)J̃ ikYk|a : TaM → Va,

whereFi := Yi(H), is preciselyTaCgen, and has a dimension 2(n− k).
In the basis{Y1|a, . . . , Y2k|a, Z1|a, . . . , Z2(n−k)|a}, its matrix is given by

A = [AVAV⊥ ],

whereAV := [Yi(Fj)J̃ jkYk|a], andAV⊥ := [Zi(Fj)J̃ jkYk|a]. BringingA into upper trian-
gular form,AV is likewise transformed into upper triangular form. Because the rank ofA

is 2k, andAV is a (2k × 2k)-matrix, its upper triangular form has 2k non-zero diagonal
elements. Consequently,AV is invertible, and due to the invertibility of̃J , one arrives at the
following assertion. �

Corollary 3.1. Let {Yi}2ki=1 denote a local spanning family for V, and let{Xi}2ki=1 be a local
spanning family(of C∞ sections) of NCgen, interpreted as a vector bundle overCgen that
is embedded in

⋃
x∈Cgen

TxM. Then, the matrix[g(Yi, Xj)(x)]2ki,j=1 is invertible for every
x ∈ Cgen.

Corollary 3.2. LetCgensatisfy the genericity assumption ofTheorem 3.1. If V is integrable,
the intersection of any integral manifold of V withCgen is a discrete set.

Proof. The previous proposition implies that generically, integral manifolds ofV intersect
Cgentransversely. Their dimensions are mutually complementary, hence the intersection set
is zero-dimensional. �
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3.2. Normal hyperbolicity and an auxiliary gradient-like system

In this section, we introduce our main tool necessary for the analysis of the topology ofC,
given by an auxiliary gradient-like flow onM whose same critical set is alsoC. Furthermore,
we show that generically,C is normal hyperbolic with respect to the latter.

3.2.1. A generalized Hessian
To begin with, we define a generalized Hessian forC. The usual coordinate-free definition

of the Hessian ofH is∇ dH , evaluated at the critical points ofH , where∇ is the Levi-Civita

connection of the Kähler metricg. Letπ†
V denote the dual projection tensor associated toπV ,

which acts on sections of the cotangent bundleT ∗M, so that for any 1-formθ, 〈π†
V θ,X〉 =

〈θ, πVX〉. The generalization of the Hessian in our context is the tensor∇(π†
V dH), which

acts as a bilinear form onΓ(TM)× Γ(TM) by way of

∇(π†
V dH)(X, Y) := 〈∇X(π†

V dH), Y〉 = (((πV )
j
rH,j),s − Γ s

ri (πV )
j
sH,j)X

rYs,

whereΓ s
ri are the Christoffel symbols. Evaluating this quantity onC, the second term in the

bracket on the lower line is zero. The non-vanishing term is determined by the matrix

[Krs] := [((πV )
j
rH,j),s]. (14)

One straightforwardly verifies that(πV )
j
i Kjk = Kik is satisfied everywhere onC, hence

rank{K} ≤ rank{πV } = 2k = rank{V }. Clearly, the corank ofK|a equals the dimension of
the connectivity component ofC containinga.

3.2.2. Definition of the gradient-like system
A flow is gradient-like if there exists a functionf : M → R that decreases strictly along

all of its non-constant orbits. The flow̃Φt of the constrained Hamiltonian system is not
gradient-like, and hence turns out to be of limited use for the study of the global topology of
C, because invariant sets ofΦ̃t do in general not only contain fixed points, but also periodic
orbits.

Instead, we introduce the auxiliary dynamical system

∂tγ(t) = −(πV∇gH)(γ(t)), (15)

whereγ : I ⊂ R → M, which turns out to be an extremely powerful tool for our purpose.
Let us denote its flow byφt ∈ Diff (M). The orbits of(15) are clearlyV -horizontal, and
bothΦc

t andφt exhibit the same critical setC.

Proposition 3.2. The flowφt is gradient-like.

Proof. Since

∂tH(γ(t)) = 〈dH(γ(t)), ∂tγ(t)〉 = −g(∇gH, πV∇gH)(γ(t))
= −g(πV∇gH, πV∇gH)(γ(t)) ≤ 0,
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it follows thatH decreases strictly along the non-constant orbits ofφt . We have here used
the fact that(g, J, ω, πV ) is a compatible quadruple. �

(g, J, ω, πV ) has been constructed for this precise reason. It is immediately clear thatφt
generates no periodic trajectories, henceC comprises all invariant sets ofφt .

3.2.3. Morse functions and non-degenerate critical manifolds
Let us next recall some standard definitions from Morse and Morse–Bott theory that will

be needed in the subsequent discussion[27,28]. The dimensions of the zero and negative
eigenspaces of the Hessian off at a critical pointa are called the nullity and the index of
the critical pointa. If all critical points off : M → R have a zero nullity,f is called a
Morse function, and the index is then called the Morse index ofa. If the critical points off
are not isolated, but elements of critical manifolds that are non-degenerate in the sense of
Bott,H is called a Morse–Bott function[8]. Throughout this section, we will assume that
H is a Morse function.

Furthermore, we recall some standard definitions related to normal hyperbolicity, applied
to the case ofC. A connectivity componentCi is locally normal hyperbolic at the pointa ∈ C
with respect toφt if it is a manifold ata, and if the restriction ofAa to the normal spaceNaC
is non-degenerate. A connectivity componentCi is called non-degenerate if it is a manifold
that is everywhere normal hyperbolic with respect toφt . The index of a non-degenerate
connectivity componentCi is the number of eigenvalues of the constrained HessianAa on
Ci that are contained in the negative half plane.

Proposition 3.3. If C is generic in the sense of Sard’s theorem, it is normal hyperbolic with
respect to the gradient-like flowφt .

Proof. This follows straightforwardly fromProposition 3.1. �

LetCi, i = 1, . . . , l denote the connectivity components ofC = ∪Ci, and letji : Ci ↪→ M

denote the embedding of theith components.

Proposition 3.4. Assume thatC satisfies the genericity assumption in the sense of Sard’s
theorem, and thatH : M → R is a Morse function. Then, Hi := H ◦ ji : Ci → R is a
Morse function, andx ∈ Ci is a critical point ofHi if and only if it is a critical point of H.

Proof. It is trivially clear that every critical point ofH is a critical point ofHi. To prove
the opposite direction, suppose thata is an extremum ofH |Ci. Then,∇gH |a ∈ NaC, but
also, by definition ofC,Pa∇gH |a = 0. ByCorollary 3.1, this can only be true if∇gHa = 0.
The Hessian of the restriction ofH at any critical point ofHi is non-degenerate, thusHi is
a Morse function onCi. �

Corollary 3.3. The critical points ofH |Cgen : Cgen→ R are precisely the critical points
ofH : M → R. If Ci is a non-generic connectivity component that is a normal hyperbolic
submanifold of M, Ci ⊂ ΣH(Ci).
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Proof. The first assertion follows trivially from the previous proposition. Assuming thatCi
is a non-generic connectivity component ofC that is a manifold and normal hyperbolic, the
previous proposition implies that there are no extrema ofH |Ci . Thus,Ci is a submanifold
of the level surfaceΣH(Ci). �

3.3. Approach via Conley–Zehnder theory

The goal in this and the next section is to derive the relationship(18)between the Poincaré
polynomials ofC, andM. We first approach this problem by use of Conley–Zehnder theory
[15] and under slightly less restrictive assumptions than genericity.

Let us for convenience first recall some of the key elements from Conley–Zehnder theory
[15]. Let Ci be any compact component ofC. An index pair associated toCi is a pair of
compact sets(Ni, Ñi) that possesses the following properties. The interior ofNi contains
Ci, and moreover,Ci is the maximal invariant set underφt in the interior ofNi. Ñi is a
compact subset ofNi that has empty intersection withCi, and the trajectories of all points
in Ni that leaveNi at some time under the gradient-like flowφt intersectÑi. Ñi is called
the exit set ofNi.

The homotopy type of the pointed spaceNi/Ñi only depends onCi, by a result proven in
[15], so that the relative cohomologyH∗(Ni, Ñi) (with coefficients appropriately chosen)
is independent of the particular choice of index pairs (the spaceNi/Ñi is obtained from
collapsing the subspacẽNi of Ni to a point)[33]. The equivalence class [Ni/Ñi] of pointed
topological spaces under homotopy is called theConley indexof Ci.

Let I denote a compact invariant set underφt . A Morse decomposition ofI is a finite,
disjoint family of compact, invariant subsets{M1, . . . ,Mn} that satisfies the following
requirement on the ordering. For everyx ∈ I \ ∪iMi, there exists a pair of indicesi < j,
such that limt→−∞ φt(x) ⊂ Mi, and limt→∞ φt(x) ⊂ Mj. Such an ordering, if it exists, is
called admissible, and theMi are called Morse sets ofI.

For every compact invariant setI admitting an admissibly ordered Morse decomposition,
there exists an increasing sequence of compact setsNi with N0 ⊂ N1 ⊂ · · · ⊂ Nm, such
that(Ni,Ni−1) is an index pair forMi, and(Nm,N0) is an index pair forI [15].

Consider compact manifoldsA ⊃ B ⊃ C. It is a standard fact that the exact sequence of
relative cohomologies

· · · δ
k−1

−→ Hk(A,B)→ Hk(A,C)→ Hk(B,C)
δk−→Hk+1(A,B)→ · · ·

implies that, withri,p denoting the rank ofHp(Ni,Ni−1),∑
i,p

λpri,p =
∑
p

bpλ
p + (1+ λ)Q(λ)

for the indicated Poincaré polynomials (cf. for instance[22]). bj is thejth Betti number
of the index pair(Nm,N0) of I, andQ(λ) is a polynomial inλ with non-negative integer
coefficients. Due to the positivity of the coefficients ofQ(λ), it is clear that

∑
i ri,p ≥ bp.

If M is compact and closed, and ifC is non-degenerate, the following holds. The invariant
setI can be chosen to be equal toM. We letNm = M andN0 = ∅ denote the top and bottom
elements of the sequence defined above, and order the connected elements ofC according
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to the descending values of the maximum ofH attained on eachCi. Then,C furnishes a
Morse decomposition forM. The homology groups ofM are isomorphic to the relative
homology groups of the index pair(Nm,N0). Hence the numbersbp are the Betti numbers
of M.

Proposition 3.5. LetCi ⊂ Cgenbe a generic connectivity component, compact and without
boundary, and let(Ni, Ñi) denote any associated index pair. Then,

Hq+µi(Ni, Ñi) ∼= Hq(Ci), (16)

whereµi is the index ofCi, andq = 0, . . . ,dim(Ci).

Proof. We consider, forε0 > 0 small, a compact tubularε0-neighborhoodU of Ci (of
dimension 2n), and let

Wcu
U (Ci) := (W−(Ci) ∪ Ci) ∩ U

denote the intersection of the center unstable manifold ofCi with U. W−(Ci) denotes the
unstable manifold ofCi. Pick some small, positiveε < ε0, and letUε be the compact tubular
ε-neighborhood ofWcu

U (Ci) in U.
Letting ε continuously go to zero, we obtain a homotopy equivalence of tubular neigh-

borhoods, for whichWcu
U (Ci) is a deformation retract. Let

Uout
ε := ∂Uε ∩ φR(Uε)

denote the intersection of∂Uε with all orbits of the gradient-like flow that contain points in
Uε. Then,(Uε, Uout

ε ) is an index pair forCi, and by lettingε continuously go to zero,Uout
ε

is homotopically retracted to∂Wcu
U (Ci).

Thus, by homotopy invariance,

H∗(Uε, Uout
ε ) ∼= H∗(Wcu

U (Ci), ∂W
cu
U (Ci)).

SinceCi is normal hyperbolic with respect to the gradient-like flow,Wcu
U (Ci) has a constant

dimensionni + µ(Ci) everywhere, whereni = dimCi. Therefore, by Lefschetz duality
[16],

Hni+µi−p(Wcu
U (Ci), ∂W

cu
U (Ci)) ∼= Hp(W

cu
U (Ci) \ ∂Wcu

U (Ci)),

whereµi = µ(Ci), the index ofCi. SinceCi is a deformation retract of the interior of
Wcu
U (Ci), the respective cohomology groups are isomorphic.
Due to dim(Ci) = ni, we have by Poincaré duality

Hp(W
cu
U (Ci) \ ∂Wcu

U (Ci)) ∼= Hp(Ci) ∼= Hni−p(Ci),

so that withq := ni − p,

Hq+µi(Uε, Uout
ε ) ∼= Hq(Ci), (17)

which proves the claim. �
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From(17), we deduce thatri,p = dimHi,p−µi(Ci) (recalling thatµi is the index ofCi),
henceri,p = bp−µi(Ci). Assuming that the number of connected components ofC is finite,
one thus obtains∑

i,p

λp+µibp(Ci) =
∑
p

λpbp(M)+ (1+ λ)Q(λ), (18)

which in particular implies
∑

i bp−µi(Ci) ≥ bp(M). Settingλ = −1,∑
p

(−1)p+µibp(Ci) =
∑
i

(−1)µiχ(Ci) = χ(M),

whereχ denotes the Euler characteristic.

Remark 3.1. In the case of mechanical systems, the phase space of the relevant constrained
Hamiltonian system is non-compact, and the critical manifold is in general unbounded.
Therefore, the arguments used here do not apply. However, since in that case,M andC are
vector bundles, we are nevertheless able to prove results that are fully analogous to(18).

We can prove a slightly more general result by relaxing the assumption of genericity.

Proposition 3.6. Assume thatC \ Cgen is a disjoint union ofC1-manifolds. Then,∑
i,p

Ci∈Cgen

bi,pλ
p+µi =

∑
p

bpλ
p + (1+ λ)Q̃(λ). (19)

bi,p are the pth Betti numbers of the connectivity componentsCi of Cgen, bp are the Betti
numbers of M, andQ̃ is a polynomial with non-negative integer coefficients.

Proof. We show thatXV
H can be infinitesimally perturbing such thatC \ Cgen is removed.

Consider, forε > 0, the compact tubular neighborhoods

Uε(Ci) = {x ∈ M|distg(x,Ci) ≤ ε} (20)

of connectivity componentsCi ⊂ C \ Cgen, where distg denotes the Riemannian distance
function induced byg. We introduce a vector fieldXε, given byπV∇gH inM \Uε(Ci), and
in the interior of everyUε(Ci) with Ci ⊂ C \ Cgen, by

Xε|x = πV∇gH |x + εh(x)∇gH |x. (21)

Here,h ∈ C1(Uε(Ci), [0,1]), obeyingh|Ci = 1 andh|∂Uε(Ci) = 0 is strictly monotonic
along the flow lines generated byπV∇gH . h exists becauseC \ Cgen is a disjoint union of
C1-manifolds.

For allCi ⊂ C \ Cgen, ∇gH is strictly non-zero inUε(Ci), as shown above. We have

g(Xε,∇gH) = (‖πV∇gH‖2
g)(x)+ εh(x)(‖∇gH‖2

g)(x),

where we have used theg-symmetry ofπV , and‖X‖2
g ≡ g(X,X). The first term on the

right-hand side is non-zero on the boundary ofUε(Ci), while the second term vanishes.
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Moreover, the second term is non-zero everywhere in the interior ofUε(Ci). Therefore,Xε

vanishes nowhere inUε(Ci). Hence,Xε is a deformation ofπV∇gH , with critical setCgen.
Notably,Cgen cannot be removed in this manner, since it contains critical points ofH .

Sinceg(Xε,∇gH) is strictly positive in everyUε(Ci), Xε generates a gradient-like flow.
Since‖Xε − πV∇gH‖g ≤ O(ε) everywhere onM, one can pickXε arbitrarily close to
πV∇gH in theL∞-norm onΓ(TM) induced by‖ · ‖g. Carrying out the Conley–Zehnder
construction with respect to the flow generated byXε yields (19). This result does not
require the assumption of normal hyperbolicity onC. �

3.4. Approach via the Morse–Witten complex

We will next provide a different derivation of(19), based on the construction of the
Morse–Witten differential complex[4,6,9,21,26,27,29–31,36,39]. The motivation is to clar-
ify the orbit structure of the gradient-like system, and to devise an explicit construction that
relates the Morse–Witten complexes of the free and constrained system to one another. This
in particular only involves the corresponding theory fornon-degenerateMorse functions.

Let us to begin with briefly recall the basic framework of this construction. LetM be
a compact, closed, orientable and smoothn-manifold, and letf : M → R be a Morse
function. LetCp denote the freeZ-module generated by the critical points off with a
Morse indexp. The setC = ⊕pC

p is the freeZ-module generated by the critical points of
f , and graded by their Morse indices. There exists a natural coboundary operatorδ : Cp →
Cp+1, with δ ◦ δ = 0, whose construction we recall next, cf.[4,9,17,36].

Introducing an auxiliary Riemannian structure onM, we letW−
a andW+

a denote the
unstable and stable manifold of the critical pointa of f under the gradient flow, respectively,
and assign an arbitrary orientation to everyW−

a . The orientation ofM, together with the
orientation ofW−

a at every critical pointa induces an orientation ofW+
a . Morse functions,

for which allW−
a andW+

a′ intersect transversely, are dense inC∞(M). The dimension of
W−
a equals the Morse indexµ(a) of a, and the dimension of the intersectionM(a, a′) :=

W−
a ∩W+

a′ is given by max{µ(a)−µ(a′),0}. For pairs of critical pointsa anda′ with relative
Morse index 1, sayµ(a) = µ(a′) + 1,M(a, a′) is a finite collection of gradient lines that
connecta with a′.

The intersection ofM(a, a′)with any regular level surfaceΣc of f with f(a) < f(Σc) =
c < f(a′) is transverse, and consists of a finite collection of isolated points. Then, one
picks the orientation ofΣc, which, combined with the section∇gf of its normal bundle,
shall agree with the orientation ofM. The submanifoldsW−

a,c := W−
a ∩ Σc andW+

a′,c :=
W+
a′ ∩Σc ofΣc are smooth, compact and closed, with complementary dimensions inΣc, and

orientations picked above. Hence, their intersection number, which is often in this context
written as〈a, δa′〉 := A(W−

a,c,W
+
a′,c), is well defined[20]. The coboundary operator of the

Morse–Witten complex is defined as theZ-linear mapδ : Cp → Cp+1, defined by

δa′ =
∑

µ(a)=p+1

〈a, δa′〉a.

Theorem 3.2. The cohomology of the differential complex(C, δ) is isomorphic to the de
Rham cohomology of M, kerδ/im δ ∼= H∗(M,Z).
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The proof can for instance be found in[4,17,29,36]. If 〈a, δa′〉 �= 0 for a paira anda′ of
critical points with a relative Morse index 1, we will say that they are effectively connected
(by gradient lines).

As is well known, the existence of the Morse–Witten complex implies the strong Morse
inequalities in the following manner. LetZp := kerδ ∩ Cp denote thepth cocyle group,
Bp ⊂ Cp thepth coboundary group, andHp := Zp \Bp thepth cohomology group under
δ. Thus, dimHp = bp(M) by Theorem 3.2. From

dimCp = bp(M)+ dimBp + dimBp+1,

where dimCp = Np (the number of critical points off with Morse indexp), follows:
n∑

p=0

λpNp =
n∑

p=0

λpbp(M)+ (1+ λ)

n∑
p=1

λp−1 dimBp (22)

(bothB0 andB2n+1 are empty). The coefficients of the polynomialQ(λ) =∑
λp−1 dimBp

are evidently non-negative and integer. Clearly, dimBp is the number of critical points of
Morse indexp that are effectively connected to critical points of Morse indexp − 1 via
gradient lines off .

3.4.1. Comparing the complexes for the free and constrained system
The goal of our discussion here is to devise an explicit construction that relates the

Morse–Witten complex of the free system(M,H) to the one on the critical manifold
(Cgen, H |Cgen), by a deformation of the gradient-like flowφt . This will yield (19).

Let Ci denote theith connectivity component ofCgen, andAi := {ai,1, . . . , ai,m} the
critical points ofH contained inCi. Furthermore, letµ(ai,r) be the associated Morse indices
of H : M → R, andHi := H |Ci denote the restriction ofH to Ci. By Proposition 3.3and
Corollary 3.3, Hi : Ci → R is a Morse function, whose critical points are precisely the
elements ofAi. The indexµ(Ci) of Ci equals the number of negative eigenvalues of the
Hessian ofH at anyai,r ∈ Ai whose eigenspace is normal toCi.

The Morse index ofai,r with respect toHi is thusµ(ai,r) − µ(Ci). To define the
Morse–Witten complex associated toCi, we introduce the freeZ-module generated by
the elements ofAi, graded by the Morse indicesp of the critical points ofHi,

Ci = ⊕pC
p
i .

To construct the coboundary operatorδi : Cpi → C
p+1
i , one uses the gradient flow onCi

generated byHi, thus obtaining

kerδi
im δi

∼= H∗(Ci,Z). (23)

Application of(22)shows that for everyCi ∈ Cgen,∑
p

λpNi,p =
∑
p

λpbp(Ci)+ (1+ λ)
∑
p

λp−1 dimB
p
i , (24)

whereBpi is thepth coboundary group of the Morse–Witten complex ofCi, andNi,p is the
number of critical points ofHi onCi of Morse indexp.
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Since every critical point ofH lies on precisely one generic componentCi, the number
Nq of critical points ofH with a Morse indexq is given by

Np =
∑
i

Ni;p−µ(Ci).

Thus, combining(24)with (22), one obtains∑
i,p;Ci∈Cgen

λqbq−µ(Ci)(Ci)

=
∑
q

λqbq(M)+ (1+ λ)
∑
q

λq−1


dimBq −

∑
Ci∈Cgen

dimB
q−µ(Ci)
i


 .

Hence,(19) is equivalent to the statement that the polynomial on the last line, which is
multiplied by(1+ λ), has non-negative integer coefficients.

By a homotopy argument, we will now prove that for allq,

dimBq ≥
∑
Ci∈Cgen

dimB
q−µ(Ci)
i (25)

holds, thus obtaining an alternative proof of(19). The main motivation here is to give an
explicit construction that geometrically elucidates this relation, noting that the left-hand
side is defined by the flow of the ‘free’ gradient-like system corresponding to(M,ω,H),
while the right-hand side is defined by the constrained gradient-like system corresponding

to (M,ω,H, V). We note that dimBq−µ(Ci)i denotes the number of critical points ofH with
a Morse indexq in Ci, which are effectively connected to critical points of Morse index
p + 1 in Ci via gradient lines of the Morse functionHi on Ci. Therefore, the sum on the
right-hand side of(25) equals the number of those critical points ofH with a Morse index
q, which are effectively connected to critical points of Morse indexq+ 1 via gradient lines
of the functionsH ◦ ji on all genericCi. Here,ji : Ci → M denotes the corresponding
inclusion maps.

3.4.2. Proof of (25)
Our strategy consists of constructing a homotopy of vector fieldsvs, with s ∈ [0,1],

whose zeros are hyperbolic and independent ofs, which generate gradient-like flows. They
interpolate betweenv1 := ∇gH , andv0, which is a vector field that is tangent toCgen.
For everys ∈ [0,1], we construct a coboundary operator via the one-dimensional integral
curves ofvs that connect its zeros. These coboundary operators are independent ofs, and
act on the freeZ-moduleC of the Morse–Witten complex associated to(M,H). (25) then
follows from a simple dimensional argument.

Lemma 3.1. There existsv0 ∈ Γ(TM), which is gradient-like, and tangent toCgen. Further-
more, the zeros ofv0 are hyperbolic, and identical to the critical points of H. The dimension
of any unstable manifold of the flow generated by−v0 equals the Morse index of the critical
point of H from which it emanates.
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Proof. We recall the vector fieldXε constructed in the proof ofProposition 3.6, and consider
the compact tubularε-neighborhoodsUε(Cgen), defined similarly as in(20). Furthermore,
let Q̄ = Q̄2 (resp.Q = 1 − Q̄) beg-orthogonal, smooth tensors onTUε(Cgen) of fixed
rank 2(n− k) (resp. 2k), with Ker{Q̄(a)} = NaCgen (resp. Ker{Q(a)} = TaCgen) for every
a ∈ Cgen.

We definev0 as follows. InM \Uε(Cgen), it shall equalXε, and that forx in Uε(Cgen), it
shall be given by

v0(x) := (πV∇gH)(x)+ h(x)(Q̄∇gH)(x),
whereh : Uε(Cgen)→ [0,1] is a smooth function obeyingh|Cgen = 1 andh|∂Uε(Cgen) = 0.
In particular,h is assumed to be strictly monotonic along all non-constant trajectories of
the flow generated byπV∇gH , and dh shall vanish onCgen.

It can be easily verified thatv0 possesses all of the desired properties. It generates a
gradient-like flow, since outside ofUε(Cgen), g(∇gH, v0) = g(∇gH,Xε) > 0, as has been
shown in the proof ofProposition 3.6. In the interior ofUε(Cgen), one findsg(∇gH, v0) =
‖πV∇gH‖2

g + h‖Q̄∇gH‖2
g, due to theg-orthogonality both ofπV andQ̄. The first term

on the right-hand side vanishes everywhere onCgen, but at no other point inUε(Cgen). The
second term equals‖Q̄∇gH‖2

g on Cgen. Since evidently,Q̄∇gH |Cgen is the gradient field
of the Morse functionH |Cgen : Cgen → R relative to the Riemannian metric onTCgen
induced byg, its zeros are precisely the critical points ofH on Cgen, and it possesses no
other zeros. Becauseg(v0,∇gH) > 0 except at the critical points ofH , it is clear that−v0
generates a gradient-like flowψ0,t , so thatH is strictly decreasing along all non-constant
orbits. Furthermore, it is clear from the given construction thatv0 is tangent toCgen.

To prove the remaining statements of the lemma, we note that the Jacobian matrix ofv0
ata in a local chart is given by

Dv0(a) = (D2
aH)

A + (Pa −Qa)(D
2
aH)

A. (26)

There is no dependence onh because dh|Cgen = 0. Furthermore,(D2
aH)

A is defined as
the matrix [gijH,jk|a] in the given chart, andPa denotes the matrix ofπV (a). Normal
hyperbolicity follows from the invertibility ofDv0(a), which is verified in the proof of
Lemma 3.1. �

Lemma 3.2. Letvs := s∇gH + (1− s)v0 with s ∈ [0,1]. Then, the flowψs,t generated by
−vs is gradient-like for anys ∈ [0,1]. The zeros ofvs are hyperbolic fixed points ofψs,t ,
and independent of s. Thus, the dimensions of the corresponding unstable manifolds equal
the Morse indices of the critical points of H from which they emanate, for all s.

Proof. We considerg(∇gH, vs) = s‖∇gH‖2
g + (1− s)g(∇gH, v0). The first term on the

right-hand side is obviously everywhere positive except at the critical points ofH , and the
same has been proved previously for the second term. Thus,H decreases strictly along all
non-constant orbits ofψs,t , hence the latter is gradient-like. The Jacobian ofvs at a critical
point ofH is given by

Dvs(a) = (12n + (1− s)(Pa −Qa))(D
2
aH)

A.
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Dvs(a) is invertible for alls ∈ [0,1], since(D2
aH)

A is invertible, and spec{Pa − Qa} ⊂
(−1,1). To prove the latter, we first observe that spec{Pa−Qa} ⊂ [−1,1] is trivial, because
Pa andQa both have a spectrum{0,1}. {−1,1} is not included, because otherwise,P̄aQa,
respectively,PaQ̄a, would not have a full rank, in contradiction toCorollary 3.1. �

By smoothness ofvs, it follows thatψs,t is C∞ in s. Thus,s smoothly parameterizes a
homotopy of stable and unstable manifolds ofψs,t emanating from the critical points ofH .
Since the fixed points ofψs,t are independent ofs, and the dimensions of the corresponding
unstable manifolds are equal to the Morse indices of the critical points ofH , we consider,
for every value ofs ∈ [0,1], the freeZ-moduleC = ⊕pC

p that is generated by the
critical points ofH , and graded by their Morse indices. For everys, we define a coboundary
operator onC, usingψs,t as follows. Picking a pair of critical points ofH with a relative
Morse index 1, we consider the unstable manifoldW−

s,a of a, and the stable manifoldW+
s,a′

of a′ associated toψs,t . Sinces parameterizes a homotopy of such manifolds, they naturally
inherit an orientation from the one picked fors = 1, in the construction of the coboundary
operator of the Morse–Witten complex for(M,H).

Let ΣE denote a regular energy surface forH(a) < E < H(a′). W±
s,a intersectsΣE

transversely, becauseH is strictly decreasing along all non-constant orbits generated by
−vs.W−

s,a∩ΣE andW+
s,a′ ∩ΣE define two homotopies of oriented submanifolds ofΣE. By

homotopy invariance of their intersection number, the coboundary operators are independent
of s, and thus identical to theδ-operator of the Morse–Witten complex given fors = 1.

The stable and unstable manifolds ofψ0,t are either confined to someCi, or connect
critical points lying on differentCi’s. Let us consider pairs of critical points ofH with a
relative Morse index 1 that lie on the same componentCi ∈ Cgen, and the corresponding
stable and unstable manifolds ofψ0,t which are contained inCi. Sincev0|Ci is the projection
of∇gH |Ci toTCi, these stable and unstable manifolds are the same as those which were used
to define the Morse–Witten complex on(Ci, Hi). Using only stable and unstable manifolds
ofψ0,t contained inCgen, we construct an operatorδ̃acting onC in the same manner in which
the coboundary operator was defined, thus obtainingδ̃ ≡ ⊕iδi, whereδi is the coboundary
operator of the Morse–Witten complex associated to the pair(Ci, Hi). Let Pi : C → Ci
stand for the projection of the freeZ-moduleC generated by all critical points ofH to
the one generated by the critical points contained inCi. Eliminating all integral lines of
−v0 that connect critical points on different connectivity components ofCgen in the above
construction, one sees thatδi = PiδPi, thusδ̃ = PiδPi. Hence, clearly,

dim(im δ|Cp) ≥ dim(im δ̃|Cp),
which precisely corresponds to(25). This completes the proof.

4. Qualitative aspects related to critical stability

So far, we have established that in the generic case, the connectivity components of
C = Cgen are embedded submanifolds of dimension 2(n − k) equal to the corank ofV .
Furthermore, we have seen that the topology of the symplectic manifoldM enforces the
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existence of connectivity components ofCgen of certain prescribed indices with respect to
the auxiliary gradient-like flowφt .

In this section, we focus on the physical dynamics, characterized by the flowΦ̃t generated
by XV

H , of the constrained Hamiltonian system(M,ω,H, V) in a tubularε-neighborhood
of Cgen, and particularly on the issue of stability. Letg again denote the auxiliary Kähler
metric introduced inSection 3, with the induced Riemannian distance function given by
distR (in contrast to the Carnot–Caratheodory distance functiondC–C induced byg, which
will also be considered). We recall that a pointa ∈ Cgen is stable if there existsδ(ε) > 0 for
everyε > 0, so that for allt, distR(Φ̃t(x), a) < ε holds for allx with distR(x, a) < δ(ε).

To elucidate the key differences between the local dynamics in the vicinity ofCgen for
the cases of integrable and non-integrableV , let us first describe the situation whereV is
integrable. As proved inCorollary 3.2, M is foliated into 2k-dimensional symplectic sub-
manifolds which intersectCgentransversely. Thus, on every leafN, the equilibrium solutions
are generically isolated points. Let the linear operatorΩa correspond to the linearization
of XV

H on TaM for somea ∈ N ∩ Cgen, and restricted to the fiberVa = TaN ⊂ TaM. Its
spectrum, if it is not purely imaginary, conclusively characterizes the stability ofa; we refer
to this as the asymptotically (un)stable case. If the spectrum ofΩa is purely imaginary,
which we refer to as the critically stable case, it is well known that if there exists a local
Lyapunov functionLN : U(a) ∩N→ R for a, thena is stable.

If V is non-holonomic, the situation is similar in the asymptotically (un)stable case, but
drastically different in the critically stable situation. In the critically stable case, the presence
of a local degenerate Lyapunov function for a single equilibriuma ∈ Cgen is of limited use,
since there is a whole submanifoldCgen∩ΣE (theH-level set for the energyE of the initial
condition) of valid equilibria for a given energyE. One may relax this condition to the
existence of the following class of functions.

Definition 4.1. Let ∇⊥g denote the component of the gradient∇g normal toCgen with
respect tog at Cgen. Let U(a) be a distR-small open neighborhood ofa ∈ Cgen. A local,
degenerate, almost Lyapunov function fora is a classC2 functionL : U(a) → R, which
satisfies(∇⊥g L)(a′) = 0 for all a′ ∈ Cgen∩U(a), and‖∇gL‖g > 0 for all x ∈ U(a) \ Cgen.
Furthermore,(∇g dL)|a′ is positive definite quadratic form onNa′Cgen for all a′ ∈ U(a) ∩
Cgen, andL(Φ̃t(x0)) ≤ L(x0) for all x0 ∈ U(x0), and allt such thatΦ̃t(x0) ∈ U(a).

Notably,L defined here is not a local degenerate Lyapunov function, becauseCi ∩U(a)
is not a critical level set (we remark that this would be equivalent toL being a Morse–Bott
function inU(a)), on whichL is extremal.

While the existence ofL guarantees that the orbit̃Φt(x0) remains within a tubular
ε-neighborhood ofCgen∩U(a) for all t such thatΦ̃t(x0) ∈ U(a), it does not imply stability
of a ∈ Cgen∩ U. There is an additional, necessary condition on the rational independence
of the frequencies of the oscillatory linear problem that must be imposed. Otherwise, an
inner resonance, connected to the appearance of small divisors, occurs, andΦ̃t(x0) ∈ U(a)
may evolve away froma, in a diffusive motion along the higher flag elements ofV that are
approximately tangent toCgen, while alongV , which is transverse toCgen, the motion is
bounded and oscillatory.
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From the analysis inSection 3, it is clear that for every connectivity componentCi ⊂ Cgen
of indexµ(Ci) = 0 (with respect toφt), the HamiltonianH is a local degenerate, almost
Lyapunov function for all of its points. The minimuma∗ ofH |Ci onCi is a local minimum of
H , and hence stable (sinceH serves as a Lyapunov function fora∗). Hence, in particular, ifV
is integrable, all points onCi are stable ifµ(Ci) = 0. We also note that on the connectivity
componentsCj with indexµ(Cj) > 0, H is never a local degenerate, almost Lyapunov
function.

The main focus in this section will be to discuss issues of this type. However, an
essential part ofSections 4.1.2 and 4.2.2will be in mathematically non-rigorous terms,
since a rigorous treatment of the matters addressed there would fall into the domain
of KAM and Nekhoroshev theory, and is beyond the scope of the present
work.

A concrete aim in this discussion is to arrive at stability criteria for equilibria of the
constrained Hamiltonian system(M,ω,H, V). From an instructive, despite elementary,
application of averaging theory, we conjecture a condition for the critically stable case that
involves an incommensurability condition imposed on the frequencies of the linearized
problem, as remarked above. In order to elucidate its geometric content, we study the
dynamics in the vicinity of a critically stable equilibrium in a geometrically invariant form
that is adapted to the flag ofV . Invoking a perturbation expansion based on this description,
we argue that the incommensurability condition, which might merely correspond to an
artifact of the averaging method, cannot be omitted. A rigorous proof of the conjectured
stability criterion is left for future work.

4.1. Stability criteria

Let a ∈ Cgen, and pick some small neighborhoodU(a) ⊂ M together with an asso-
ciated Darboux chart, with its origin ata. The equations of motion are given by∂txt =
P(xt)JH,x(xt) = XV

H(xt), where the coordinates are given byx = (x1, . . . , xn, xn+1,

. . . , x2n), andJ is the symplectic standard matrix. Furthermore,H,x abbreviates∂xH , and
P is the (2n×2n)-matrix representing the tensorπV .ω-skew orthogonality ofπV translates
into P(x)JX(x) = JP†(x)X(x) for all vector fieldsX.

Proposition 4.1. There exists a chart in which the equations of motion have the form

∂t(yt, zt) = (Ω0yt + Y(zt, yt), Z(zt, yt)) ∈ R
2k × R

2(n−k). (27)

In particular,Ω0 corresponds to the restriction of DXVH(0) toV0, and|Y(y, z)|, |Z(y, z)| =
O(|y||z|)+O(|y|2).

Proof. In a sufficiently small vicinityU ⊂ R
2n of the origin (corresponding toa), one infers

from Corollary 3.1thatTaCgen⊕ V0 = R
2n, for a ∈ U ∩ Cgen. Accordingly, we choose

local coordinatesz ∈ U ′(0) ⊂ R
2(n−k) onCgen, andỹ ∈ V0, noting that the decomposition

x = a(z) + ỹ for any x ∈ U ⊂ R
2n is unique, wherea : R

2n−k ↪→ U is the (smooth)
embedding. Lety denote the coordinates ofỹ with respect to some family of basis vectors
for V0. Then,(27)evidently follows from Taylor expansion. �
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4.1.1. Asymptotic (in)stability
If spec{Ω0} ∪ iR = ∅, there exists, by the center manifold theorem, a coordinate trans-

formation(y, z)→ (ȳ, z̄), such that(27)becomes

∂t(ȳt, zt) = (Ω0ȳt + Ȳ (ȳt, z̄t),0) (28)

[40], where Ȳ (0, z̄) = 0 for all z̄. Thus,a ∈ Cgen is asymptotically unstable if there
are eigenvalues with a positive real part, and asymptotically stable if all eigenvalues have a
negative real part. IfV is integrable, asymptotic stability is impossible, because the dynamics
is Hamiltonian on every integral manifold. However, ifV is non-integrable, there is, to the
author’s knowledge, no obstruction to the existence of asymptotically stable equilibria,
since the flow map is not symplectic.

4.1.2. An elementary application of averaging theory
In the case of critical stability, one has spec{Ω0} = {iω1, . . . , iω2k}with ωi ∈ R\{0} for

i = 1, . . . ,2k. Let us for the context of an averaging analysis assume that the vector fields
on the right-hand side of(27) are real analytic with respect to(y, z). We apply a complex
linear coordinate transformation that diagonalizesΩ0, and denote the complexified, new
coordinates and vector fields again by(y, z), andY(y, z), Z(y, z), respectively, by which
we find

∂t(yt, zt) = (diag(iω)yt + Y(yt, zt), Z(yt, zt)) ∈ C
2k × C

2(n−k), (29)

whereω := (ω1, . . . , ω2k). Complexifying(27), the continuation ofCgenintoC
2n is defined

as the common zeros ofY(0, z) andZ(0, z) for z ∈ C
2(n−k).

We next introduce polar coordinates(I, φ) ∈ R
2k × [0,2π)2k and(J, θ) ∈ R

2(n−k) ×
[0,2π)2(n−k) in terms ofyr =: eiφr Ir and zs =: eiθsJs with r = 1, . . . ,2k and s =
1, . . . ,2n−2k. In particular,I ∈ R

2k,J ∈ R
2n−2k,φ ∈ [0,2π]2k = T

2k (the 2k-dimensional
torus), andθ ∈ [0,2π]2n−2k = T

2n−2k. For brevity, let eiφv := (eiφ1v1, . . . ,eiφ2k v2k) and
eiθw := (eiθ1w1, . . . ,eiθ2(n−k)w2(n−k)), for v ∈ C

2k andw ∈ C
2n−2k. (29) is then easily

seen to be equivalent to (the dot abbreviates∂t)

İ = Re{e−iφY(eiφI,eiθJ)}, φ̇ = ω + Im{e−iφdiag(∂I)Y(e
iφI,eiθJ)}. (30)

J̇ = Re{e−iθZ(eiφI,eiθJ)}, θ̇ = Im{e−iθdiag(∂J )Z(e
iφI,eiθJ)}. (31)

Let us assume thatε := |I(0)| ( 1, and|J(0)| ≤ O(ε2). We then introduce rescaled
variablesI → εI andJ → ε2J .

Analyticity of Y(y, z) andZ(y, z) with respect to(y, z) implies that the power series
expansion with respect to eiφI and eiθJ converges forε sufficiently small. Accordingly,
(30) and (31)yield

İ
r =

∑
|m|+|p|≥2

ε|m|+2|p|−1Fr
mp(I, J)ei(〈m,φ〉−φr) ei〈p,θ〉, (32)

J̇
s =

∑
|m|+|p|≥2

ε|m|+2|p|−2Gs
mp(I, J)ei〈m,φ〉 ei〈p,θ〉, (33)
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φ̇r = ωr +
∑

|m|+|p|≥2

ε|m|+2|p|−1Φr;mp(I, J)ei(〈m,φ〉−φr) ei〈p,θ〉, (34)

θ̇s =
∑

|m|+|p|≥2

ε|m|+2|p|−2Θs;mp(I, J)ei〈m,φ〉 ei〈p,θ〉, (35)

where we introduced the multi-indicesm ∈ Z
2k andp ∈ Z

2n−2k, with |m| :=∑ |mr| and
|p| :=∑ |ps|. In this Fourier expansion with respect to the 2π-periodic angular variables
φ andθ, every Fourier coefficient labeled by a pair of indices(m, p), is a homogenous
polynomial of degree|m| in I, and of degree|p| in J .

If the components ofω are all mutually rationally independent, one may consider the
averaged quantitiesft(φ)→ f̄t := (2π)−n

∫
Tn

dφ ft(φ). From(26),Y(y, z) andZ(y, z) are
O(|y|), thus their power series involve terms ei〈m,φ〉 with |m| ≥ 1, but none with|m| = 0.
Averaging(32)–(35)with respect toφ thus gives

˙̄I = ε2F̃ (Ī, J̄ , θ̄), ˙̄J = 0, ˙̄θ = 0 (36)

for some functionF̃ , where the bars account for averaged variables. Thus, if we in addi-
tion assume that there exists a local degenerate almost Lyapunov function with respect to
Cgen∩ U, it follows for the averaged equations of motion that|Ī| is bounded for allt. In
particular, if the incommensurability condition holds,|J̄ | is then also bounded for allt,
anda (respectively, 0) is, for the averaged system, stable. Based on these insights, and on
intuition stemming from KAM and Nekhoroshev theory, it is thus natural to conjecture the
following stability criterion.

Conjecture 4.1. LetCi ⊂ Cgen be a connectivity component of the critical manifold, and
let a ∈ Ci, with spec{DXVH(a)} \ {0} = {iω1, . . . , iω2k}, andωi ∈ R\ {0} for i = 1, . . . ,2k.
Assume that: (1) the frequenciesωr are rationally independent, and (2) that there exists
a local degenerate, almost Lyapunov function with respect toCi ∩ U(a), in the sense of
Definition 4.1. Then, a is stable in the sense of Nekhoroshev. In particular, condition(2) is
always satisfied(by the HamiltonianH) if the index ofCi isµ(Ci) = 0.

4.2. The relationship to sub-Riemannian geometry

To elucidate the geometric nature of the requirement of rationally independent frequen-
cies, we will now approach the discussion of critical stability from a different point of view.
This discussion involves issues that are central to sub-Riemannian geometry[5,18,19,34].

We study the time evolution map in a tubularε-vicinity of U(a) ∩ Cgen by invoking
a geometrically invariant Lie series that is adapted to the elements of the flag ofV . By
an asymptotic analysis, we explain the mechanism by which an instability can arise. The
reason is that if the eigenfrequencies of the linear problem are not incommensurable, the
problem of small divisors appears. This picture seems to be familiar from the perturba-
tion theory of integrable Hamiltonian systems, but we note once more that the lack of
integrability here originates from the non-holonomy of the constraints. A rigorous treat-
ment of this last part of the analysis is beyond our current scope, and left for future
work.
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4.2.1. Dynamics along the flag ofV
Let U denote a small open neighborhoodU of a ∈ C, and assume thatCgen := C ∩ U

satisfies the genericity condition ofTheorem 3.1.

Lemma 4.1. LetCgen= C ∩ U have the genericity property formulated inTheorem 3.1.
Then, there existsε > 0 such that every pointx ∈ U with dR(x,Cgen) < ε is given by

x = exps Y(a), |s| < ε

for someY ∈ Γ(V) with ‖Y‖gM ≤ 1, a ∈ Cgen (exps Y denotes the1-parameter group of
diffeomorphisms generated by Y, with exp0 Y = id).

Proof. We choose a spanning family{Yi ∈ Γ(V)}2k1 of V , with ‖Yi‖gM = 1. If for all
a ∈ Cgen, TaCgen contains no subspace ofVa, then

exp1(t1Y1+ · · · + t2kY2k)(Cgen) ∩ U
is an open tubular neighborhood ofCgen in U, for ti ∈ (−ε, ε). Because the normal space
NaCgen is dual to the span of the 1-forms dFi at a, this condition is satisfied if and only
if the matrix [dFj(Yi)] = [Yi(Yj(H))] is invertible everywhere onCgen. According to
Proposition 3.1, this condition is indeed fulfilled. �

Hence, there is an elementY ∈ Γ(V) with ‖Y‖gM ≤ 1, so thatx = Ψε(a) for some
0 < ε ( 1. Sincea ∈ Cgen, it is clear that under the flow generated byXV

H , Φ̃±t(a) = a,
thus the solution of(6) with initial conditionx is given by

Ψt
ε(a) := Φ̃t ◦ Ψε(a) = (Φ̃t ◦ Ψε ◦ Φ̃−t)(a).

Ψ t
ε is, in particular, the 1-parameter group of diffeomorphisms with respect to the variable

ε that is generated by the pushforward vector field

Yt(x) := Φ̃t∗Y(x) = dΦ̃t ◦ Y(Φ̃−t(x)), (37)

where d̃Φt denotes the tangent map associated toΦ̃t . From the group propertyYs+t = Φ̃s∗Yt ,
it follows that:

∂tYt = ∂s|s=0Φ̃s∗Yt = [XV
H, Yt ], (38)

everywhere inU.
Next, we pick a local spanning family{Yi ∈ Γ(V)}2ki=1 for V that satisfiesω(Yi, Yj) = J̃ij ,

with

J̃ :=
(

0 1k
−1k 0

)
.

Furthermore, definingθi(·) := ω(Yi, ·), πV = J̃
ij
Yi ⊗ θj, whereJ̃

ij
are the components of

J̃
−1 = −J̃ . In particular,

XV
H = πV (X

V
H) = −Yi(H)J̃ ijYj

in the basis{Yi}2ki=1.
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The following proposition characterizes the orbit emanating fromx in terms of nested
commutators with respect toYt .

Proposition 4.2. Letf, Fi ∈ C∞(U), whereFi := Yi(H), i = 1, . . . ,2k, and assume that
Fi(Ψ

t
ε(a)), f(Ψ

t
ε(a)) are real analytic inε. For X, Y ∈ Γ(TM), let

LrYX = [Y, . . . , [Y,X]]

denote the r-fold iterated Lie derivative. Then, for sufficiently smallε,

∂tf(Ψ
t
ε(a)) = −Fi(Ψt

ε(a))J̃
ik
∑
r≥0

εr

r!
(LrYt Yk)(f ◦ Ψt

ε)(a). (39)

Proof. Clearly,

∂tf(Ψ
t
ε(a)) = XV

H(f)(Ψ
t
ε(a)) = −Fi(Ψt

ε(a))J̃
ikYk(f)(Ψ

t
ε(a))

= −Fi(Ψt
ε(a))J̃

ik(Ψt
ε∗Yk)(f ◦ Ψt

ε)(a). (40)

Using the Lie seriesΨt
ε∗Yk =

∑
r(ε

r/r!)LrYt Yk, we arrive at the assertion. �

Proposition 4.3. Assume thatYt=0 ∈ Γ(V), and let {Yj}2k1 be the given local spanning
family of V. Then, LiYt Yj ∈ Γ(Vi), whereVi is the ith flag element of V.

Proof. SinceΦ̃t∗ : Γ(V)→ Γ(V), Yt is a section ofV for all t if it is for t = 0. The claim
immediately follows from the definition of the flag ofV . �

Proposition 4.3implies that there are functionsai(t, ·) ∈ C∞(U), i = 1, . . . ,2k, so that
Yt(x) = ai(t, x)Yi. The next proposition determines their time evolution.

Proposition 4.4. LetYt=0 = ai0Yi define the initial condition, and introduce the matrix

Ωx := [Yl(Fi)(x)J̃
ij ].

Then, pointwise in x,

am(t, x) = (exp(−tΩx))
m
j a

j

0+ Fj(x)R
jm
i (t, x)a

i
0, (41)

where

R
jm
i (t, x) := J̃ jl J̃nk

∫ t

0
ds(exp(−(t − s)Ωx))

m
k ω([Yl, Φ̃s∗Yi], Yn).

Proof. The initial condition att = 0 is given byY0 = ai0Yi, that is, byai(0, x) = ai0. Thus,
by the definition ofYt in (37), one hasYt = ai0Φ̃t∗Yi, so thatai(t, x)Yi = ai0Φ̃t∗Yi. From

ω(Yi, Yj) = J̃ ij , J̃ ik = −J̃ki andJ̃ imJ̃
ml = −δli,

al(t, x) = −ai0ω(Φ̃t∗Yi, Yj)J̃
jl
.
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Now, taking thet-derivative on both sides of the equality sign, one finds

∂ta
m(t, x) = −ai0ω([XV

H, Φ̃t∗Yi], Yk)J̃
km

= −ai(t, x)Yi(Fj)(x)J̃ jm− ai0Fj(x)J̃
jl
J̃

km
ω([Yl, Φ̃t∗Yi], Yk).

Using the variation of constants formula pointwise inx, one arrives at the assertion. �

4.2.2. Non-holonomy and small divisors
Using the description of the dynamics in the vicinity ofa derived above, we will here

use the small parameterε for an asymptotic expansion. The intention of this part of the dis-
cussion, which is not rigorous, is to explain the geometric origin of the incommensurability
condition on frequencies inConjecture 4.1.

We consider the following simplified situation:

(1) Ωx = Ω, constant for allx in U.
(2) spec{Ω} = {iω1, . . . , iω2k}, with ωr ∈ R.
(3) ‖Ω‖ := supr|ωr| ( (1/ε).

Let us briefly comment on the generic properties of{ωr}. WritingΩ = J̃A, we decompose
the matrixA = [Yi(Yj(H))(a)] into its symmetric and antisymmetric partsA+ andA−,
respectively.A− = [[Yj, Yi](H)(a)]/2 vanishes ifV is integrable, which one deduces from
XH |a ∈ V⊥a for all a ∈ Cgen, and the Frobenius condition. The linear systemȧ = J̃A+a is
Hamiltonian, hence the spectrum ofJ̃A+ consists of complex conjugate pairs of eigenvalues
in iR if it is purely imaginary (here,a := (a1, . . . , a2k)). Considering̃JA− as a perturbation
of J̃A+, we may generically assume that all frequenciesωr are distinct from one another,
and that there are both negative and positive frequencies.

Under the simplifying assumptions at hand, let us compute(41) to leading order inε.
From(41), one infers

Yt = a
j

0(exp(−tΩ))ijYi +
∑
i

O(|x|)Yi,

since|Fj(x)| = O(|x|) = O(ε), which follows fromFj(a) = 0. Thus,

[Yt,X] = a
j

0 exp(−tΩ)ij[Yi,X] +
∑
i

O(ε)[Yi,X] +
∑
i

O(1)Yi

for all X ∈ Γ(TM), andx ∈ Uε(a). Assuming that all objects in question are of classC∞,
iterating the Lie bracketLYt r-fold produces(

r∏
m=1

a
jm
0 (exp(−tΩ))imjm +O(ε)

)
[Yi1, [Yi2, . . . , [Yir , Yl], . . . ]] ,

plus a series of terms with less thanr nested Lie commutators that contribute to higher order
corrections.

Let us, for the discussion of the leading order terms along each flag element ofV , omit
the relative errors of order O(ε). By the assumption of smoothness, our considerations are
valid for t ≤ O(ε−1). Let us consider the term
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Fi(Ψ
t
ε(a))J̃

ik(LrYt Yk)(f ◦ Ψt
ε)(a) (42)

for fixed r. It is easy to see that

Fi(Ψ
t
ε(a)) = Yt(Fi)(a)+O(ε2), (43)

due toFi(a) = 0. Therefore,

Fi(Ψ
t
ε(a))J̃

ik = εexp(−tΩ)mj aj0Ωk
m +O(ε2), (44)

from a straightforward calculation.
Hence, the terms withr nested commutators in(42)are

εr+1

r!
ai0 exp(−tΩ)ji Ωl

j

×
(

r∏
m=1

a
jm
0 (exp(−tΩ))imjm

)
[Yi1, [. . . , [Yir , Yl], . . . ]](f)(a)+O(εr+2),

as long as distR(Ψt
ε(a), a) ≤ O(ε). This implies that forf ∈ C∞(U),

f(Ψt
ε(a)) ∼ f(a)+

∑
r≥0

εr+1

r!

∫ t

0
ds ai0 exp(−sΩ)ji Ωl

j

×
(

r∏
m=1

a
jm
0 (exp(−sΩ))imjm

)
[Yi1, . . . , [Yir , Yl], . . . ](f)(a), (45)

up to relative errors of higher order inε for every fixedr.
If f is chosen as theith coordinate functionxi, so thatf(Ψt

ε(a)) = xit , the quantity
[Yi1, . . . , [Yir , Yl], . . . ](f)(a) is theith coordinate of the vector field defined by the brackets
ata. Consequently,(45) is the component decomposition ofxit relative to the flag ofV ata,
to leading order inε.

By the given simplifying assumptions, spec{Ω} ⊂ iR \ {0}, and the norm of exp(−sΩ)
is 1, independent ofs. Consequently, the integrand of(45) is bounded for alls. It follows
that if therth integral in the sum diverges, it will become apparent only fort ≥ O(1/εr).
This would correspond to an instability along the direction of the flag elementVr. While
the leading term withr = 0 is bounded for allt, terms withr > 0 can diverge.

We next write

a(s) = exp(−sΩ)a0 =
2k∑
α=1

Aαeα exp(−iωαs), (46)

where{eα} is an orthonormal eigenbasis ofΩ with respect to the standard scalar product in
C

2k, and spec{Ω} = {iωα}. The amplitudesAα ∈ C are determined by the initial condition
ai(t = 0) = ai0, which we assume to be non-zero. By linear recombination of the vector
fieldsYi, one can seteiα = δi,α. Then,(45)can be written as∑

r≥0

εr+1

r!

∑
l;i1,...,ir

Il;i1,...,ir (t)[Yi1, . . . , [Yir , Yl] · · · ](f)(a), (47)
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where

Il;i1,...,ir (t) :=
∫ t

0
ds ωlAl

(
r∏

m=1

Ajm

)
e−is(ωl+

∑r
m=1ωjm)

= iωlAl

ωl +
∑r

m=1ωjm

(
r∏

m=1

Ajm

)(
e−it(ωl+

∑r
m=1ωjm) − 1

)
. (48)

We note that the sum of frequencies (of generically indefinite signs) in the denominator on
the last line raises the problem of small divisors. We also remark that evidently, the nested
commutators vanish if all indicesi1, . . . , ir, l have equal values, as it should be (otherwise,
the solutions would always diverge).

4.2.3. Rational frequency dependence and blow-up of solutions
Let us next discuss the situation in which the small divisors approach zero. To this end,

we introduce the set

I(r)(t) := {Il;i1,...,ir (t)}2kl,ij=1 \ {Il;l,...,l(t)}2kl=1, (49)

which we endow with the norm‖I(r)(t)‖ := supI(t)∈I(r)(t)|I(t)|, and let‖A‖ := supi=1,...,2k
{|Ai|}, whereAi areC-valued amplitudes.

Furthermore, letU := {ω1, . . . , ω2k}, and let

Ur := U + · · · + U︸ ︷︷ ︸
r times

, (50)

denote itsr-fold sumset, which is the set containing all sums ofr elements ofU.
For two sets of real numbersU andB, we define

d(U,B) := inf
i,j
{|ai − bj||ai ∈ U, bj ∈ B}. (51)

Then, it follows from(48) that if d(Ur,−U) > 0,

‖I(r)(t)‖ ≤ d(Ur,−U)−1‖Ω‖‖A‖r (52)

(the sum over frequencies
∑r

m=1ωjm in (48) is an element ofUr, and can only equal−ωl if
d(Ur,−U) = 0). However, ifd(Ur,−U) = 0, there is a tuple of indices{l; i1, . . . , ir} such
that

Il;i1,...,ir (t) = −tωlAl

r∏
m=1

Ajm, (53)

in case of which‖I(r)(t)‖ ∼ t, that is, a divergence linear int for large t (recalling that
the present asymptotic considerations requiret ≤ ε−1). Only if there are simultaneously
positive and negative frequencies,d(Ur,−U) = 0 is possible, but due to the remark at the
beginning ofSection 4.2.2, this situation must generically assumed to be given.

As an illustration, the following picture holds forr ≤ 2. The fact that forr = 0,‖I(0)(t)‖
is bounded for allt is clear. Forr = 1, the first flag elementV1 = [V, V ] is in question.
The condition for the emergence of a divergence is thatd(U,−U) = 0. This is precisely
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given if there is a pair of frequencies±ωi of equal modulus, but opposite sign. Forr = 2,
assuming thatd(U,−U) > 0, the conditiond(U2,−U) = 0 implies that there is a triple of
frequencies such thatωi1 + ωi2 = −ωi3, ij ∈ {1, . . . ,2k}. If this occurs, the solution will
diverge in the direction of the second flag element,V2 = [V, [V, V ]]. The discussion for
r > 2 continues in the same manner.

Hence, our conclusion from this asymptotic analysis is that ifd(Ur,−U) = 0 for some
r, then‖I(r)(t)‖ = O(t) for t→∞.

The physical insight gained from the above discussion can be summarized as follows. If
the frequencies of the linearized problem fail to satisfy the incommensurability condition
d(Ur,−U) > 0 for all r, the equilibriuma is unstable. However, the time required for an
orbit to exit from a Riemannianε-neighborhoodUε(a) is very large. In fact, assuming that
d(Ur,−U) = 0 for somer ≤ deg(V) (the degree of non-holonomy ofV ), a timet ∼ O(1/εr)
is necessary to exit fromUε(a) in the direction of the flag elementVr (due to the factorεr/r!
in (45)). We note that the orbit does not drift out fromUε(a) ∩ Cgen in the direction ofVa
owing to the existence of a local degenerate Lyapunov function required in the conjectured
stability criterion. Therefore, this discussion suggests that the incommensurability condition
imposed on the frequencies of the linearized system can indeed not be omitted.

4.2.4. Instabilities in the context of Carnot–Caratheodory geometry
The constrained Hamiltonian system(M,ω,H, V) shares many characteristics with sys-

tems typically encountered in sub-Riemannian geometry[5,18,19,34]. The natural metric
structure in this context is given by the Carnot–Caratheodory distance function distC–C in-
duced by the Riemannian metricg. It assigns to a pair of pointsx, y ∈ M the length of the
shortestV -horizontalg-geodesic.

If V satisfies the Chow condition, distC–C(x, y) is finite for all x, y ∈ M, by the
Rashevsky–Chow theorem[5,19]. In this case, the Carnot–Caratheodoryε-ball

BC–C
ε (a) := {x ∈ M|distC–C(x, a) < ε}

is open inM.
If V fails to satisfy the Chow condition, pairs of points that cannot be joined byV -horizontal

gM-geodesics are assigned a Carnot–Caratheodory distance∞. Then,M is locally foliated
into submanifoldsNλ of dimension(2n− rankVdeg(V)) (we recall that deg(V) denotes the
degree of non-holonomy ofV ), withλ in some index set, which are integral manifolds of the
(necessarily integrable) final elementVdeg(V) of the flag ofV . On everyNλ, the distribution
Vλ := j∗λV satisfies the Chow condition, wherejλ : Nλ → M is the inclusion. Therefore,
all pointsx, y ∈ Nλ have a finite distance with respect to the Carnot–Caratheodory metric
induced by the Riemannian metricj∗λgM . Every leafNλ is an invariant manifold of the flow
Φ̃t .

Let {Yir }deg(V)
r=1 denote a local spanning family ofTMsuch that{Yir } spans the flag element

Vr. Let theg-length of allYir ’s be 1. Then, we define the ‘quenched’ box

Boxε(x) :=

exp1


deg(V)∑

r=1

εr
dimVr∑
ir=1

tirYir


 (x)

∣∣∣∣∣∣ tir ∈ (−1,1)






T. Chen / Journal of Geometry and Physics 49 (2004) 418–462 447

inNλ, whereλ is suitably picked so thatx ∈ Nλ. Evidently, ifV satisfies Chow’s condition,
Nλ = M. According to the ball-box theorem[5,19], there are constantsC > c > 0, such
that

Boxcε(x) ⊂ BC–C
ε (x) ⊂ BoxCε(x).

Carnot–Caratheodoryε-balls can be approximated by quenched boxes in Riemannian ge-
ometry.

The above perturbative results imply that if there is somer < deg(V), for which
d(Ur,−U) = 0, the flowΦ̃t blows up the quenched boxes, and thus the Carnot–Caratheodory
ε-ball arounda ∈ Cgen, linearly in t, and along the direction ofVr. In fact,BC–C

ε (a) is
widened alongVr at a rate linear int. For t = O(1/ε), Φ̃t maps the Carnot–Caratheodory
ε-ball containing the initial condition to a Carnot–Caratheodory ball of radius O(1). Thus,
in the context of Carnot–Caratheodory geometry, these instabilities, which have no counter-
part in systems with integrable constraints, are far more significant than in the Riemannian
picture.

5. Autonomous non-holonomic systems in classical mechanics

In this main section, we focus on the analysis of non-holonomic mechanical systems,
and their relationship to the constrained Hamiltonian systems considered previously[2,3].
The discussion is restricted to linear non-holonomic,Pfaffianconstraints.

Let (Q, g,U) be a Hamiltonian mechanical system, whereQ is a smooth Riemannian
n-manifold with aC∞ metric tensorg, and whereU ∈ C∞(Q) denotes the potential energy.
No gyroscopic forces are taken into consideration. Letg∗ denote the induced Riemannian
metric on the cotangent bundleT ∗Q. ForX ∈ Γ(TM), let θX be the 1-form defined by
θX(Y) = g(X, Y) for all Y ∈ Γ(TQ). Clearly,g(X, Y) = g∗(θX, θY ) for all X, Y ∈ Γ(TQ).

The Kähler metric of the previous discussion, also denoted byg, will not appear in this
section. From here on,g will denote the Riemannian metric onQ, which should not give
rise to any confusion.

In a local trivialization ofT ∗Q, a pointx ∈ T ∗Q is represented by a tuple(qi, pj), where
qi are coordinates onQ, andpk are fiber coordinates inT ∗q Q, with i, j = 1, . . . , n. The
natural symplectic 2-form associated toT ∗Q, can be written in coordinates as

ω0 =
∑
i

dqi ∧ dpi = −dθ0.

θ0 = pi dqi is referred to as the symplectic 1-form.
We will only consider Hamiltonians of the form

H(q, p) = 1
2g
∗
q(p, p)+ U(q). (54)

In local bundle coordinates, the corresponding Hamiltonian vector fieldXH is given by

XH =
∑
i

((∂piH)∂qi − (∂qiH)∂pi).
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The orbits of the associated Hamiltonian flowΦt satisfy

q̇i = ∂piH(q, p), ṗj = −∂qjH(q, p). (55)

The superscript dot abbreviates∂t , and will be used throughout the discussion.
Let AI denote the space of smooth curvesγ : I ⊂ R → T ∗Q, with I compact and

connected, and lett denote a coordinate onR. The basis 1-form dt defines a measure onR.
The action functional is defined byI : AI → R,

I[γ] =
∫
I

dt(γ∗θ0−H ◦ γ) =
∫
I

dt
(∑

pi(t)q̇
i(t)−H(q(t), p(t))

)
(56)

with γ̇ = ∑
(q̇i∂qi + ṗi∂pi). Denoting the base point projection byπ : T ∗Q → Q, let

c := (π ◦γ) : I → Q denote the projection ofγ toQ. We assume that‖c(I)‖ is sufficiently
small so that solutions of(55)exist, which connect the end pointsc(∂I). Among all curves
γ : I → T ∗Q with fixed projected end pointsc(∂I), the ones that extremizeI are physical
orbits of the system.

5.1. Linear non-holonomic constraints

Let us next impose linear, ‘Pfaffian’ constraints on the Hamiltonian mechanical system
(Q, g,U), by adding a rankk distributionW overQ to the existing data, and invoke the
Hölder variational principle[3] that generates the correct physical flow onT ∗Q. The orbits
of the resulting constrained dynamical system possessW-horizontal projections toQ.

We introduce theg-symmetric projection tensor associated toW given byρW = ρ2
W :

TQ→ TQ, with

Ker(ρW) = W⊥, ρW(X) = X ∀X ∈ Γ(TQ),

and its orthogonal complementρ̄W = 1 − ρW . We note that in local coordinates,ρW is
represented by an× n matrix of rankk. The dual ofW , denoted byW∗, is defined as the
image ofW under the isomorphismg : TQ→ T ∗Q, and likewise for(W∗)⊥ := g ◦W∗.
The correspondingg∗-orthogonal projection tensors onT ∗Q are denoted byρ†

W andρ̄†
W ,

respectively. Our inspiration to introduceρW andρ̄W for this analysis stems from Brauchli
[11].

5.1.1. Dynamics of the constrained mechanical system
Next, we derive the equations of motion of the constrained mechanical system from the

Hölder variational principle. For a closely related approach to the Lagrangian theory of
constrained mechanical systems, cf.[13].

Definition 5.1. A projectiveW-horizontal curve inT ∗Q is an embeddingγ : I ⊂ R ↪→
T ∗Q whose imagec = π ◦ γ under base point projectionπ : T ∗Q→ Q is tangent toW .

Let γs : I → T ∗Q, with s ∈ [0,1], be a smooth 1-parameter family of curves for which
the end pointscs(∂I) are independent ofs (wherecs := π ◦ γs).



T. Chen / Journal of Geometry and Physics 49 (2004) 418–462 449

Definition 5.2. A W-horizontal variation of a projectiveW-horizontal curveγ is a smooth
1-parameter familyγs : R → T ∗Q, with s ∈ [0,1], for which (∂/∂s)(π ◦ γs) is tangent to
W , andγ0 = γ.

Let

φi(t) := ∂s|s=0q
i(s, t), φk(t) := ∂s|s=0pk(s, t).

To anyW-horizontal variationγs of aW-horizontal curveγ0 with fixed projections of the
boundaries

(π ◦ γs)(∂I) = (π ◦ γ0)(∂I), (57)

so thatφi|∂I = 0, we associate the action functional

I[γs] =
∫
I

(∑
pi(s, t)q̇

i(s, t)−H(q(s, t), p(s, t))
)

dt.

Definition 5.3 (Hölder principle). A physical orbit of the constrained mechanical system
(Q, g,U,W) is a projectiveW-horizontal curveγ0 : I → T ∗Q that extremizesI[γs] among
all W-horizontal variationsγs which satisfy(57).

Hence, if

δI[γs] =
∑

piφ
i|∂I +

∫
I

∑
((ṗi − ∂qiH)φ

i − (q̇i + ∂piH)χi) = 0 (58)

for all W-horizontal variations ofγ0 that satisfyφi|∂I = 0, thenγ0 is a physical orbit.

Theorem 5.1. In the given local bundle chart, the Euler–Lagrange equations of the Hölder
variational principle are the differential–algebraic relations

q̇ = ρW(q)∂pH(q, p), (59)

ρ
†
W(q)ṗ = −ρ†

W(q)∂qH(q, p), (60)

0= ρ̄W(q)∂pH(q, p). (61)

Proof. The boundary term vanishes due toφi|∂I = 0.
For any fixed value oft, one can writeφ(t) as

φ(t) =
k∑

α=1

fα(q(t))Yα(q(t)),

whereYα is ag-orthonormal family of vector fields overc(I) that spansWc(I). Furthermore,
fα ∈ C∞(c(I)) are test functions obeying the boundary conditionfα(c(∂I)) = 0.

Sincefα andχ are arbitrary, the terms in(58) that are contracted withφ, and those
contracted withχ vanish independently. In case ofφ, one finds∫

I

dt fα(ṗ+ ∂qH)iY
i
α = 0
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for all test functionsfα. Thus,(ṗ + ∂qH)iY
i
α = 0 for all α = 1, . . . , k, or equivalently,

ρ
†
W(ṗ+ ∂qH) = 0, which proves(60).
Sinceγ0 isW-horizontal,ρ̄W(q)q̇ = 0, so theχ-dependent term inδI [γs] gives∫

I

dt(q̇− ρW∂pH)
i(ρ

†
Wχ)i +

∫
I

dt(ρ̄W∂pH)
i(ρ̄

†
Wχ)i = 0.

The components ofχ in the images ofρ†
W(q) andρ̄†

W(q) can be varied independently. Thus,
both terms on the second line must vanish separately, as a consequence of which one obtains
(59) and (61). �

Definition 5.4. The smooth submanifold

S := {(q, p)|ρ̄W(q)∂pH(q, p) = 0} ⊂ T ∗Q

locally characterized by(61) is called the physical leaf.

S contains all physical orbits of the system, that is, all smooth pathsγ : R → S ⊂ T ∗Q
that satisfy the differential–algebraic relations ofTheorem 5.1.

Theorem 5.2. Let H be of the form(54). Then, there exists a unique physical orbitγ :
R
+ → S with γ(0) = x for everyx ∈ S.

Proof. We coverSwith local bundle charts ofT ∗Qwith coordinates(q, p). For the Hamil-
tonian(54), (61) reduces to

ρ̄W(q)g
−1(q)p = g−1(q)ρ̄

†
W(q)p = 0,

where one uses theg-orthogonality ofρ̄W . Hence,(61) is equivalent tōρ†
W(q)p = 0. Since

S is the common zero level set of then component functions(ρ̄†
W(q)p)i, every section

X = vr(q, p)∂qr + ws(q, p)∂ps

of TS is annihilated by the 1-forms

d(ρ̄†
Wp)i = ∂qr (ρ̄

†
Wp)i dq

r + ∂ps(ρ̄
†
Wp)i dps

for i = 1, . . . , n (of which onlyn− k are linearly independent), onS.
This is expressed by

0= (vr∂qr )ρ̄
†
Wp+ (ws∂ps)ρ̄

†
Wp = (vr∂qr )ρ̄

†
Wp+ ρ̄

†
Ww,

which shows that the componentsv of X determine the projection̄ρ†
Ww. Hence, the com-

ponentsv andρ†
Ww suffice to uniquely reconstructX. Consequently, the right-hand sides

of (59) and (60)determine a unique sectionX of TS, so that every curveγ : R
+ → S,

with arbitraryγ(0) ∈ S, that satisfies∂tγ(t) = X(γ(t)) automatically fulfills(59)–(61). This
proves the assertion. �
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5.1.2. Equilibria
The constrained Hamiltonian mechanical system(Q, g,U,W) possesses

CQ := {q ∈ Q|ρ†
W(q)∂qU(q) = 0} (62)

as its critical set. An application of Sard’s theorem fully analogous to the proof of
Theorem 3.1shows that generically, this is a piecewise smooth, (n − k)-dimensional sub-
manifold ofQ (recall that the rank ofρW(q) is k).

5.1.3. Symmetries
LetG be a Lie group, and letψ : G→ Diff (Q), h )→ ψh with Ψe = id, denote a group

action. The constrained Hamiltonian mechanical system(Q, g,U,W) is said to exhibit a
G-symmetry if the following hold. (1) Invariance of the Riemannian metrics:g ◦ ψh = g

andg∗ ◦ ψh = g∗ for all h ∈ G. (2) Invariance of the potential energy:U ◦ ψh = U for all
h ∈ G. (3) Invariance of the distributions:ψh∗W = W andψ∗hW

∗ = W∗ for all h ∈ G.

5.2. Construction of the auxiliary extension

We are now prepared to embed the non-holonomic mechanical system into a constrained
Hamiltonian system of the type discussed in the previous sections.

To this end, we will introduce a set of generalized Dirac constraints over the symplectic
manifold(T ∗Q,ω0) in the way presented inSection 1. They define a symplectic distribution
V , in a manner that the constrained Hamiltonian system(T ∗Q,ω0, H, V), with H given
by (54), contains the constrained mechanical system as a dynamical subsystem. Thus, the
auxiliary constrained Hamiltonian system(T ∗Q,ω0, H, V) extends the mechanical system
in the sense announced inSection 1. An early inspiration for this construction stems from
Sofer et al.[32]. We require the following properties to be satisfied by(T ∗Q,ω0, H, V):

(i) S is an invariant manifold under the flow̃Φt generated by(6).
(ii) All orbits Φ̃(x) with initial conditionsx ∈ S satisfy the Euler–Lagrange equations of

the Hölder principle.
(iii) S is marginally stable under̃Φt .
(iv) The critical setC of Φ̃t is a vector bundle overCQ, hence equilibria of the constrained

mechanical system are obtained from equilibria of the extension by base point projec-
tion.

(v) Symmetries of the constrained mechanical system extend to those ofΦ̃t .

Let us briefly comment on (iii)–(v). (iii) is of importance for numerical simulations of
the mechanical system. (iv) makes it easy to extract information about the behavior of the
mechanical system from solutions of the auxiliary system. Condition (v) allows to apply
reduction theory to the auxiliary system, in order to reduce the constrained mechanical
system by a group action, if present. The choice forV is by no means unique, and depending
on the specific problem at hand, other conditions than (iii)–(v) might be more useful.

5.2.1. Construction ofV
Guided by the above requirements, we shall now constructV .
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To this end, we pick a smooth,g∗-orthonormal family of 1-forms{ζI}n−kI=1 with

ζI = ζIk(q)dqk,

so that locally,

〈{ζ1, . . . , ζn−k}〉 = (W∗)⊥.

The defining relationship̄ρ†
W(q)p = 0 for S is equivalent to the condition

fI(q, p) := g∗q(p, ζI(q)) = 0 ∀I = 1, . . . , n− k. (63)

It is clear thatfI ∈ C∞(T ∗Q).
(1) To satisfy conditions (i) and (iii), we require that the level surfaces

Mµ := {(q, p)|fI(q, p) = µI; I = 1, . . . , n− k} (64)

with µ := (µ1, . . . , µn−k), are integral manifolds ofVdeg(V). Here, deg(V) denotes the
degree of non-holonomy ofV , and evidently,M0 = S.

Condition (iii) is satisfied because

L(q, p) :=
∑
I

|fI(q, p)|2

is an integral of motion for orbits of̃Φt . SinceL grows monotonically with increasing
|µ|, and attains its (degenerate) minimum of value zero onS, it is a Lyapunov function
for S. Anything better than marginal stability is prohibited by energy conservation.

(2) To satisfy condition (ii), we demand thatρ̄W(q)q̇ = 0, or equivalently, that

ζI(q̇) = 0 ∀I = 1, . . . , n− k, (65)

shall be satisfied along all orbits(q(t), p(t)) of (6), owing to(59).
(3) If the constrained mechanical system exhibits aG-symmetry, characterized by a group

actionψ : G→ Diff (Q) so thatψh∗W = W ∀h ∈ G, the local family of 1-forms{ζI}
can be picked in a manner thatψ∗hζI = ζI is satisfied for allh ∈ G in a vicinity of the
unit elemente. Consequently, the functionsfI(q, p) = h∗q(ζI, p) and their level sets
Mµ are invariant under the group action.

The condition that(64) are integral manifolds ofVdeg(V) ⊃ V implies that all sections
of V are annihilated by the 1-forms dfI , for I = 1, . . . , n− k. Furthermore, the condition
(65) requiresV to be annihilated by the 1-forms

ξI := ζIr (q)dqr +
∑
s

0 dps (66)

that are obtained from liftingζI to T ∗(T ∗Q), with I = 1, . . . , n− k.

Proposition 5.1. The distribution

V :=
(⋂

I

ker dfI

)⋂(⋂
I

kerξI

)
⊂ T(T ∗Q)

is symplectic.
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Proof. V is symplectic iff its symplectic complementV⊥ is. With the given data, the
latter condition is more convenient to check.V⊥ is locally spanned by the vector fields
(Y1, . . . , Y2k) obtained from

ω0(YI, ·) = ξI(·), ω(YI+k, ·) = dfI(·), (67)

whereI = 1, . . . , k, andω0 = −dpi ∧ dqi.
V⊥ is symplectic if and only ifD := [ω(YI, YJ )] has values inGLR(2(n− k)).
We remark that in the present notation, capital indices range from 1 tok if they label

1-forms, and from 1 to 2k if they label vector fields.
In local bundle coordinates,

dfI = (∂qifI)(q, p)dqi + ζIi (q)g
ij (q)dpj,

wheregij are the components of the metric tensorg onQ, as before. Let us introduce the
functionsE(q) := [ζJi(q)] andF(q, p) := [∂qjfK(q, p)], both with values in MatR(n ×
(n− k)), which we use to assemble

K :=
(
E† 0

F† E†g−1

)
: T ∗Q→ MatR(2(n− k)× 2n).

Any component vectorv : T ∗Q→ R
2n that locally represents an element ofΓ(V) satisfies

Kv = 0. The symplectic structureω0 is locally represented byJ , defined in(7). One can
easily verify that theIth row vector of the matrixKJ−1 is the component vector ofYI . In
conclusion, introducing the matrices

G(q) := E†(q)g−1(q)E(q),

S(q, p) := F†(q, p)g−1(q)E(q)− E†(q)g−1(q)F(q, p),

one immediately arrives at

D = KJK† =
(

0 G

−G S

)
. (68)

SinceζI has been picked ag∗-orthonormal family of 1-forms onQ, it is clear thatG(q) =
1n−k. Thus,D is invertible. This proves thatV⊥ is symplectic. �

5.2.2. Construction of the projection tensors
Next, we determine the matrix of theω0-orthogonal projection tensorπV , which is as-

sociated toV , in the present bundle chart. Again, it is more convenient to carry out the
construction for its complement first.

Proposition 5.2. The matrix of theω0-orthogonal projection tensor̄πV associated toV⊥
(considered as a tensor field that mapsΓ(T(T ∗Q)) to itself, with kernel V) is given by

π̄V =
(
ρ̄W 0

T ρ̄
†
W

)

in the local bundle chart(q, p). The matrixT = T(q, p) is defined in(68).



454 T. Chen / Journal of Geometry and Physics 49 (2004) 418–462

Proof. The proof ofLemma 2.1can be used for this proof. The inverse of(68) is

D−1 =
(

S −1n−k
1n−k 0

)
,

where we recall thatG(q) = 1n−k. The Ith column vector of the matrixKJ−1 is the
component vector ofYI (we have required that{Y1, . . . , Y2(n−k)} spansV⊥). This implies

thatπ̄V = JK†D−1K.

Lemma 5.1. The matrix ofρ̄W in the given chart is given by

ρ̄W(q) = g−1(q)E(q)E†(q). (69)

Proof. The construction presently carried out forπ̄V can also be applied tōρW . One simply
replacesV⊥ by W⊥, andω0 by the Riemannian metricg onQ. An easy calculation im-
mediately produces the asserted formula. The matrix ofρW is subsequently obtained from
ρW + ρ̄W = 1. For more details, cf.[11]. �

Introducing

T(q, p) := E(q)F†(q, p)ρW(q)− ρ
†
W(q)F(q, p)E

†(q), (70)

a straightforward calculation produces the asserted formula forπ̄V .

Corollary 5.1. In the given bundle coordinates, the matrix ofπV is

πV =
(
ρW 0

−T ρ
†
W

)
,

whereT = T(q, p) is defined in(70).

Proof. This is obtained fromπV + π̄V = 12n. �

In this chart,πV (x)J = Jπ†
V (x), byω0-skew orthogonality ofπV .

Theorem 5.3. Let H be as in(54). Then, the dynamical system locally represented by(
q̇

ṗ

)
=

 0 ρW

−ρ†
W −T


( ∂qH

∂pH

)
, (71)

corresponding to the constrained Hamiltonian system(T ∗Q,ω0, H, V), is an extension of
the constrained mechanical system(Q, g,U,W).

Proof. By construction,S is an invariant manifold of the associated flowΦ̃t , hence(61) is
fulfilled for all orbits of (71)with initial conditions inS.

The equatioṅq = ρW∂pH in (71)obviously is(59).
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Next, using the notationf := (f1, . . . , fn−k)†,

f = E†g−1p,

and substituting(70) for T(q, p), the equation foṙp in (71)becomes

ṗ = −ρ†
W∂qH − EF†q̇+ ρ

†
WFf .

SinceMµ are invariant manifolds of the flow̃Φt generated by(71), ∂tfI(q(t), p(t)) vanishes

along all orbits of(71), so thatF†q̇+ E†g−1ṗ = 0. This implies that

ṗ = −ρ†
W∂qH + EE†g−1ṗ+ ρ

†
W∂q(f

1
2f

†f). (72)

Recalling that̄ρW = g−1EE† from (69), and using the fact thatf = 0 onS, one arrives at

(60)by multiplication withρ†
W from the left. �

5.2.3. Equilibria of the extension
The critical set of the extension constructed above is characterized by the following

theorem.

Theorem 5.4. The critical set of(71) is given by the vector bundle

C =
⋃
q∈CQ

{q} × (W∗
q )
⊥

with base spaceCQ, cf. (62).

Proof. Let us first consider(72). As has been stated above, the second term on its right-hand

side is equal tōρ†
W(q)ṗ, and moreover, from(63), one concludes that

f†f = ‖ρ̄†
Wp‖2

g∗ .

The Hamiltonian(54)can be decomposed into

H(q, p) = H(q, ρ
†
Wp)+ 1

2‖ρ̄†
Wp‖2

g∗ ,

due to theg∗-orthogonality ofρ†
W andρ̄†

W , so that(72)can be written as

ṗ = −ρ†
W∂qH(q, ρ

†
Wp)+ ρ̄

†
Wṗ.

The equilibria of(71)are therefore determined by the conditions

ρ
†
W(q)p = 0, ρ

†
W(q)∂qH(q, ρ

†
Wp) = 0.

BecauseH depends quadratically onρ†
Wp, the second condition can be reduced to

ρ
†
W(q)∂qU(q) = 0

using the first condition. Comparing this with(62), the assertion follows. �
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In particular, this fact implies that every equilibrium(q0, p0) of the extension defines a
unique equilibriumq0 onCQ by base point projection.

To analyze the stability of a given equilibrium solutionq0 ∈ CQ, it is necessary to
determine the spectrum of the linearization ofXV

H ata = (q0,0).
A straightforward calculation along the lines of the previous discussion shows that in the

present bundle chart,

DXVH(a) =

 0 ρWg

−1ρ
†
W

−ρ†
WD

2
q0
UρW − R 0


 (a), (73)

where

[Rjk] := [∂qiU(ρW)
r
j(ρW)

s
k∂qs (ρW)

i
r] ∈ MatR(n× n). (74)

Furthermore,D2
q0
U is the matrix of second derivatives ofU. The stability discussion in the

previous section can now straightforwardly be applied toDXVH(a).

5.2.4. Extension of symmetries
Let us assume that the constrained mechanical system(Q, g,U,W)exhibits aG-symmetry

ψ : G→ Diff (Q). Then, we claim that it is extended by(T ∗Q,ω0, H, V). To this end, we
recall that the 1-formsζI satisfyψ∗hζI for all h ∈ G close to the unit.

Via its pullback,ψ induces the group action

Ψ := ψ∗ : G× T ∗Q→ T ∗Q

on T ∗Q. This group action is symplectic, that is,Ψ∗hω0 = ω0 for all h ∈ G. For a proof,
consider for instance[1].

The 1-formsξI , defined in(66), satisfyΨ∗h ξI = ξI , and likewise,fI ◦Ψh = fI is satisfied
for all h ∈ G close to the unit. The definition ofV in Proposition 5.1thus implies that

Ψh∗V = V

is satisfied for allh ∈ G. Due to the fact thatω andV are bothG-invariant,πV andπ̄V are
also invariant under theG-actionΨ .

The HamiltonianH in (54) is G-invariant underΨ , by assumption on the constrained
Hamiltonian mechanical system. Thus,XH fulfills Ψh∗XH = XH for all h ∈ G, which
implies thatXV

H = πV (XH) isG-invariant.

5.3. The topology of the critical manifold

SinceC is not a compact submanifold ofT ∗Q, our previous results cannot be applied
directly. However, owing to the vector bundle structure ofC andT ∗Q, the result∑

i,p

λp+µi dimHp
c (Ci) =

∑
p

λp dimHp
c (T

∗Q)+ (1+ λ)Q(λ) (75)

still holds, whereH∗c denotes the de Rham cohomology based on differential forms with
compact supports. The polynomialQ(t) has non-negative integer coefficients.
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In a first step, the arguments ofSection 3can be straightforwardly applied toCQ. CQ is
normal hyperbolic with respect to the gradient-like flowψt generated by

∂tq(t) = −ρW(q(t))∇gU(q(t)),
it contains all critical points of the Morse functionU, but no other conditional extrema
of U|CQ apart from those (it is gradient-like because along all of its non-constant orbits,
(d/dt)U(t) = −g(ρW∇gU, ρW∇gU)|q(t) < 0 holds, sinceρW is an orthogonal projection
tensor with respect to the Riemannian metricg onQ). This can be proved by substituting
M → Q, H → U, πV → ρW , g(Kähler) → g, andC→ CQ in Section 3, and by applying
the arguments used there. Hence, lettingµi denote the index of the connectivity component
CQi of CQ, (19) implies that for compact, closedQ,∑

i,p

λp+µi dimHp(CQi) =
∑
p

λp dimHp(Q)+ (1+ λ)Q(λ), (76)

whereQ(t) is a polynomial with non-negative integer coefficients.
CQ, being the zero section ofC, is a deformation retract ofC, and likewise,Q is a

deformation retract ofT ∗Q. Thus,(75)follows trivially from the invariance of the de Rham
cohomology groups under retraction,Hp

c (Ci) ∼= Hp(CQi), H
p
c (T

∗Q) ∼= Hp(Q). Hence,
(75) is equivalent to∑

i,p

λp+µibp(CQi) =
∑
p

λpbp(Q)+ (1+ λ)Q(λ), (77)

wherebp is thepth Betti number.
Consequently, one finds

∑
i bp−µi(CQi) ≥ bp, and in particular, forλ = −1, one obtains∑

i,p

(−1)p+µibp(CQi) =
∑
i

(−1)µiχ(CQi) = χ(Q),

whereχ denotes the Euler characteristic.

6. Applications, illustrations and examples

Let us conclude our analysis with the discussion of some simple applications and exam-
ples.

6.1. A computational application

Let us first formulate an application of our analysis for the computational problem of
finding the equilibria in a large constrained multibody system. It is in this context also desir-
able to determine whether a given set of parameters and constraints implies the existence of
non-generic critical points. This is due to the circumstance that in practice, manufacturing
imprecisions can have a significant effect on the latter.

For large multibody systems, equilibria can realistically only be determined by numerical
routines. The strategy presented inSections 2 and 4suggests the following method.
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If U is a Morse function whose critical points are known, and ifQ is compact and closed,
it is possible to numerically construct all generic connectivity components ofCQ. This is
because generic components ofCQ are smooth, (n − k)-dimensional submanifolds ofQ
containing all critical points ofU, and no other critical points ofU|CQ . This information can
be exploited to find sufficiently many points onCQ, so that a suitable interpolation routine
enables the approximate reconstruction of an entire connectivity component. To this end,
one chooses a vicinity of a critical pointa of U, and uses a fixed point solver to determine
neighboring zeros of|ρW(q)∇gU(q)|2, which are elements ofCQ close toa. Iterating this
procedure with the critical points found in this manner, pieces ofCQ of arbitrary size can
be determined.

If all critical points ofU are a priori known, one can proceed in this manner to construct
all connectivity components ofCQ that contain critical points ofU. Then, one is guaranteed
to have found all of the generic components ofC if the numerically determined connectivity
components are closed, compact, and contain all critical points ofU.

We remark that determining the critical points of a Morse functionU : Q → R

is a difficult numerical task by itself. Attempting to find critical points by simulating
the gradient flow generated by−∇gU is time costly, because the critical points define
a thin set inM. Their existence, however, is of course ensured by the topology
of Q.

Another remark is that all critical pointsa at whichD(ρW∇gU)(a) has a reduced rank,
are elements of the non-generic part ofCQ. Thus, the latter condition is an indicator for
non-genericity. If there are such exceptional critical points in a technically relevant region
of Q, they can be removed by a small local modification of the system parameters or
constraints.

6.2. A disc in a periodic potential, sliding on the plane

Let us consider a mechanical example, consisting of a thin disc of radiusr and massm on
the planeR2, which is attached to a massless skate. The connecting line between the center
of the disc and the contact point at the center of the skate with the plane is normal to the
plane, precisely if the disc is horizontal. We assume that the disc remains horizontal during
its motion, and that the translational motion of the disc is only possible in the direction of
the skate.

Let (x1, x2) denote the position of the center of mass of the disc with respect to some
Euclidean coordinate system onR

2, and letφ denote the angle enclosed by the skate and
thex1-axis.

The kinetic energy of this system is given by

T = 1
2m(ẋ

2
1 + ẋ2

2)+ 1
2(

1
2(mr2)φ̇2),

which defines a Riemannian metric onTQ with metric tensor

[gij (φ, θ, ψ)] =



m 0 0

0 m 0

0 0 1
2mr2


 .
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Furthermore, we assume that it moves against the background of a(2πZ)3-periodic potential
energy

U(x1, x2, φ) =
∑
i=1,2

ci(1− cosxi)+ cφ(1− cosφ),

wherec1, c2, andcφ are coupling constants.
Dividing out the translational symmetry with respect to(2πZ)3, the configuration man-

ifold of this mechanical system is given byQ = [0,2π]3 ∼= T 3 (periodic boundary condi-
tions). Clearly,U : T 3 → R is a real analytic Morse function, with eight critical points in
the corners of [0, π]3, while each of the remaining critical points in [0,2π]3 is identified
with one of the former by periodicity. Correspondingly, we will from here on consider
(x1, x2) as coordinates onT 2, that is, mod 2π.

The requirement that the disc shall slide in the direction of the skate is expressed by the
non-holonomic constraint

ẋ1 sinφ − ẋ2 cosφ = 0.

The matrixE†(x1, x2, φ), introduced in the proof ofTheorem 5.1, thus corresponds to

E†(x1, x2, φ) = ( sinφ,− cosφ,0),

so thatE†g−1E = 1/m.
The orthoprojectors̄ρW andρW are thus straightforwardly obtained as

ρ̄W(x1, x2, φ) =




sin2φ − sinφ cosφ 0

− sinφ cosφ cos2φ 0

0 0 0


 ,

ρW(x1, x2, φ) =




cos2φ sinφ cosφ 0

sinφ cosφ sin2φ 0

0 0 1


 .

The critical set is given by

CQ = {(x1, x2, φ)|(ρ†
W∇U)(x1, x2, φ) = 0}

(where∇ := (∂x1, ∂x2, ∂φ)). Let

Ca,b := {(x1, x2, φ)|x1 = a, x2 ∈ [0,2π], φ = b}.
Then,

CQ =
⋃

a,b∈{0,π}
Ca,b.
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It is trivially clear thatCQ contains all critical points ofU. Letqc ∈ Ca,b, wherea, b ∈ {0, π}.
Noting thatρW = diag(1,0,1) onCQ, we have

(∇ ⊗ (ρ
†
W∇U))(qc) = (ρ

†
W(∇ ⊗ ∇U)ρW)(qc)+ R̃(qc)

=



c1 cosa 0 c2 sinx2

0 0 0

0 0 cφ cosb


 . (78)

Clearly,

spec((∇ ⊗ (ρ
†
W∇U))(qc)) = {0, c1 cosa, cφ cosb},

which is, for each fixeda, b, independent ofx2. Thus, the indices of the connectivity

componentsCa,b with respect to the gradient-like flow generated by−ρ†
W∇U are given by

µ(C0,0) = 2, µ(C0,π) = µ(Cπ,0) = 1, µ(Cπ,π) = 0, (79)

and clearly,Ca,b ∼= S1 for all a, b ∈ {0, π}. Since the Betti numbers ofT 3 are given by
b0 = b3 = 1, b1 = b2 = 3, and those ofCa,b by b0(Ca,b) = b1(Ca,b) = 1, b2(Ca,b) =
b3(Ca,b) = 0, one finds that∑

a,b

bp−µ(Ca,b)(Ca,b) = bp(Q)

for p = 0, . . . ,3, or explicitly,

b3−2(C0,0) = 1= b3(T
3), b2−2(C0,0)+ b2−1(C0,π)+ b2−1(Cπ,0) = 3= b2(T

3),

b1−0(Cπ,π)+ b1−1(C0,π)+ b1−1(Cπ,0) = 3= b1(T
3), b0−0(Cπ,π) = 1= b0(T

3),

in agreement with(77).
Next, we determine the spectrum of the linearization ofXV

H at (qc,0) ∈ T ∗Q, cf. (73).
To this end,

(ρWcg−1ρWc
†)(qc) =




1

m
0 0

0 0 0

0 0
2

mr2


 ,

and multiplying this matrix from the right with(78)yields

Ω(qc, θ) :=




c1 cosa

m
0

c2 sinx2

m

0 0 0

0 0
2cφ cosb

mr2


 .
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Clearly,

spec(Ω(qc, θ)) =
{

0,
c1 cosa

m
,

2cφ cosb

mr2

}
.

From(73), it is easy to see that

spec(DXVH(qc,0)) =
{

0,±
√
c1 cosa

m
,±
√

2cφ cosb

mr2

}
,

hence critical stability occurs for the casea = b = π, while in all other cases, there is an
asymptotically unstable direction.

We conclude that all componentsCa,b, wherea + b ≤ π, are unstable. In the critically
stable casea = b = π, the linear problem is oscillatory, and the eigenfrequencies are

given by
√
c1/m and

√
2cφ/mr2, independent ofx2. Sinceµ(Cπ,π) = 0, our discussion in

Section 4suggests that the connectivity componentCπ,π of CQ is stable in the sense of

Nekhoroshev if the ratio
√
c1mr2/2cφ is irrational.
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